August 2006
No. OC355 REVISED EDITION-B
utilized

TECHNICAL \& SERVICE MANUAL

[Model name]
<Outdoor unit> PUMY-P100YHM

PUMY-P125YHM

PUMY-P140YHM
[Service Ref.]
PUMY-P100YHM PUMY-P100YHM PUMY-P125YHM PUMY-P125YHM ${ }_{1}$ PUMY-P140YHM PUMY-P140YHM 1

Revision:

- RoHS PARTS LIST added.
- Some descriptions have been modified.
- Please void OC355 REVISED EDITION-A.

CONTENTS

1. TECHNICAL CHANGES 2
2. SAFETY PRECAUTION 2
3. OVERVIEW OF UNITS 5
4. SPECIFICATIONS 7
5. DATA 8
6. OUTLINES AND DIMENSIONS 18
7. WIRING DIAGRAM 19
8. NECESSARY CONDITIONS FOR SYSTEM CONSTRUCTION 20
9. TROUBLESHOOTING 30
10. ELECTRICAL WIRING 71
11. REFRIGERANT PIPING TASKS 74
12. DISASSEMBLY PROCEDURE 78
13. PARTS LIST 84
14. RoHS PARTS LIST 87
15. OPTIONAL PARTS Back cover
[^0]
PUMY-P100YHM \longrightarrow PUMY-P100YHM 1
 PUMY-P125YHM \longrightarrow PUMY-P125YHM 1
 PUMY-P140YHM \longrightarrow PUMY-P140YHM 1

- The parts below have been changed.
(1)4-way valve and coil (21S4)
(2)Fan motor (MF1,MF2)
(3Noise filter circuit board (N.F.)
(4)Multi controller circuit board (MULTI.B.)

2 SAFETY PRECAUTION

2-1. CAUTIONS RELATED TO NEW REFRIGERANT

Cautions for units utilizing refrigerant R410A

Use new refrigerant pipes.
Avoid using thin pipes.

Make sure that the inside and outside of refrigerant piping is clean and it has no contamination such as sulfur hazardous for use, oxides, dirt, shaving particles, etc.
In addition, use pipes with specified thickness.
Contamination inside refrigerant piping can cause deterioration of refrigerant oil etc.

Store the piping to be used during installation indoors and keep both ends of the piping sealed until just before brazing. (Leave elbow joints, etc. in their packaging.)
If dirt, dust or moisture enter into refrigerant cycle, that can cause deterioration of refrigerant oil or malfunction of compressor.

Use ester oil, ether oil or alkylbenzene oil (small amount) as the refrigerant oil applied to flares and flange connections.
If large amount of mineral oil enter, that can cause deterioration of refrigerant oil etc.

Charge refrigerant from liquid phase of gas cylinder.

If the refrigerant is charged from gas phase, composition change may occur in refrigerant and the efficiency will be lowered.

Do not use refrigerant other than R410A.

If other refrigerant (R22 etc.) is used, chlorine in refrigerant can cause deterioration of refrigerant oil etc.

Use a vacuum pump with a reverse flow check valve.

Vacuum pump oil may flow back into refrigerant cycle and that can cause deterioration of refrigerant oil etc.

Keep the tools with care.

If dirt, dust or moisture enter into refrigerant cycle, that can cause deterioration of refrigerant oil or malfunction of compressor.

Do not use a charging cylinder.

If a charging cylinder is used, the composition of refrigerant will change and the efficiency will be lowered.

Ventilate the room if refrigerant leaks during operation. If refrigerant comes into contact with a flame, poisonous gases will be released.

[1] Cautions for service

(1) Perform service after collecting the refrigerant left in unit completely.
(2) Do not release refrigerant in the air.
(3) After completing service, charge the cycle with specified amount of refrigerant.
(4) When performing service, install a filter drier simultaneously.

Be sure to use a filter drier for new refrigerant.

[2] Additional refrigerant charge

When charging directly from cylinder

- Check that cylinder for R410A on the market is syphon type.
. Charging should be performed with the cylinder of syphon stood vertically. (Refrigerant is charged from liquid phase.)

[3] Service tools

Use the below service tools as exclusive tools for R410A refrigerant.

No.		Specifications
(1)	Gauge manifold	- Only for R410A
		-Use the existing fitting specifications. (UNF1/2)
		-Use high-tension side pressure of 5.3MPa G or over.
(2)	Charge hose	- Only for R410A
		-Use pressure performance of 5.09MPa.G or over.
(3)	Electronic scale	-
(4)	Gas leak detector	-Use the detector for R134a, R407C or R410A.
(5)	Adaptor for reverse flow check	-Attach on vacuum pump.
(6)	Refrigerant charge base	-
(7)	Refrigerant cylinder	-Only for R410A Top of cylinder (Pink) Cylinder with syphon
(8)	Refrigerant recovery equipment	-

Cautions for refrigerant piping work

New refrigerant R410A is adopted for replacement inverter series. Although the refrigerant piping work for R410A is same as for R22, exclusive tools are necessary so as not to mix with different kind of refrigerant. Furthermore as the working pressure of R410A is 1.6 time higher than that of R22, their sizes of flared sections and flare nuts are different.
(1)Thickness of pipes

Because the working pressure of R410A is higher compared to R22, be sure to use refrigerant piping with thickness shown below. (Never use pipes of 0.7 mm or below.)

Diagram below: Piping diameter and thickness

Nominal dimensions	Outside diameter (mm)	Thickness (mm)	
	6.35	0.8	R22
$3 / 8^{\prime \prime}$	9.52	0.8	0.8
$1 / 2^{\prime \prime}$	12.70	0.8	0.8
$5 / 8^{\prime \prime}$	15.88	1.0	0.8
$3 / 4 "$	19.05	-	1.0

(2)Dimensions of flare cutting and flare nut

The component molecules in HFC refrigerant are smaller compared to conventional refrigerants. In addition to that, R410A is a refrigerant, which has higher risk of leakage because of its working pressure higher than that of other refrigerants. Therefore, to enhance airtightness and intensity, flare cutting dimension of copper pipe for R410A have been specified separately from the dimensions for other refrigerants as shown below. The dimension B of flare nut for R410A also have partly been changed to increase intensity as shown below. Set copper pipe correctly referring to copper pipe flaring dimensions for R410A below. For $1 / 2^{\prime \prime}$ and $5 / 8^{\prime \prime}$, the dimension B changes.
Use torque wrench corresponding to each dimension.

Dimension B
Flare cutting dimensions

Nominal dimensions	Outside diameter	Dimension A $\left({ }_{-0.4}^{+0}\right)$	
		R22	
$1 / 4^{\prime \prime}$	6.35	9.1	9.0
$3 / 8^{\prime \prime}$	9.52	13.2	13.0
$1 / 2^{\prime \prime}$	12.70	16.6	16.2
$5 / 8^{\prime \prime}$	15.88	19.7	19.4
$3 / 4^{\prime \prime}$	19.05	-	23.3

Flare nut dimensions

Nominal dimensions	Outside diameter	Dimension B	
		R22	
$1 / 4^{\prime \prime}$	6.35	17.0	17.0
$3 / 8^{\prime \prime}$	9.52	22.0	22.0
$1 / 2^{\prime \prime}$	12.70	26.0	24.0
$5 / 8^{\prime \prime}$	15.88	29.0	27.0
$3 / 4^{\prime \prime}$	19.05	-	36.0

(3)Tools for R410A (The following table shows whether conventional tools can be used or not.)
$\left.\begin{array}{|l|l|l|l|c|}\hline \text { Tools and materials } & \text { Use } & \text { R410A tools } & \text { Can R22 tools be used? } & \text { Can R407C tools be used? } \\ \hline \text { Gauge manifold } & \text { Air purge and refrigerant charge } & \text { Tool exclusive for R410A } & \times & \times \\ \hline \text { Charge hose } & \text { Operation check and the two above } & \text { Tool exclusive for R410A } & \times & \times \\ \hline \text { Gas leak detector } & \text { Gas leak check } & \text { Tool for HFC refrigerant } & \times & \times \\ \hline \text { Refrigerant recovery equipment } & \text { Collection of refrigerant } & \text { Tool exclusive for R410A } & \times & \times \\ \hline \text { Refrigerant cylinder } & \text { Refrigerant charge } & \text { Tool exclusive for R410A } & \times & \times \\ \hline \text { Applied oil } & \text { Apply to flared section } & \begin{array}{l}\text { Ester oil and alkylbenzene } \\ \text { oil (minimum amount) }\end{array} & \times & \times \\ \hline \text { Safety charger } & \begin{array}{l}\text { Prevent compressor malfunction } \\ \text { when charging refrigerant by } \\ \text { spraying liquid refrigerant }\end{array} & \text { Tool exclusive for R410A } & \times & \times \\ \hline \text { Alkylbenzene oil: minimum amount }\end{array}\right\}$
\times : Prepare a new tool. (Use the new tool as the tool exclusive for R410A.)
Δ : Tools for other refrigerants can be used under certain conditions.
\bigcirc : Tools for other refrigerants can be used.

3 OVERVIEW OF UNITS

3-1. UNIT CONSTRUCTION

Outdoor unit		4HP	5HP	6HP
		PUMY-P100YHM PUMY-P100YHM ${ }_{1}$	PUMY-P125YHM PUMY-P125YHM ${ }_{1}$	PUMY-P140YHM PUMY-P140YHM
Indoor unit that can be connected	Capacity	Type 20 ~ Type 125	Type 20 ~ Type 140	
	Number of units	1~6 unit		
	Total system wide capacity	$50 \% \sim 130 \%$ of outdoor unit capacity *2		

	CMY-Y62-G-E	CMY-Y64-G-E	CMY-Y68-G-E
Branching pipe components	Branch header (2 branches)	Branch header (4 branches)	Branch header (8 branches)

[^1]
3-2. UNIT SPECIFICATIONS

(1) Outdoor Unit

| Service Ref. | | $\begin{array}{c}\text { PUMY-P100YHM } \\ \text { PUMY-P100YHM }\end{array}$ |
| :--- | :--- | :---: | :---: | :---: | \(\left.\begin{array}{c}PUMY-P125YHM

PUMY-P125YHM\end{array}\right)\)

Cooling / Heating capacity indicates the maximum value at operation under the following condition.

```
*. Cooling Indoor : D.B. }2\mp@subsup{7}{}{\circ}\textrm{C}/\mathrm{ W.B. }19.\mp@subsup{0}{}{\circ}\textrm{C
    Outdoor: D.B. 35 %
    Heating Indoor : D.B. }2\mp@subsup{0}{}{\circ}\textrm{C
    Outdoor: D.B. }\mp@subsup{7}{}{\circ}\textrm{C}/\mathrm{ W.B. }\mp@subsup{6}{}{\circ}\textrm{C
```

(2) Method for identifying MULTI-S model

■ Indoor unit < When using Model 80 >

■ Outdoor unit <When using model 125 >

(3) Operating temperature range

	Cooling	Heating
Indoor-side intake air temperature	W.B. $15 \sim 24^{\circ} \mathrm{C}$	D.B. $15 \sim 27^{\circ} \mathrm{C}$
Outdoor-side intake air temperature	D.B. $-5 \sim 46^{\circ} \mathrm{C}{ }^{* 1}$	W.B. $-15 \sim 15^{\circ} \mathrm{C}$

Notes D.B. : Dry Bulb Temperature
W.B. : Wet Bulb Temperature
*1. 10~46 ${ }^{\circ} \mathrm{C}$ DB : In case of connecting PKFY-P20/P25 type indoor unit.
■ In case of connecting fresh air type indoor unit (Only PUMY-P • YHM1 can connect Fresh air type indoor unit.)

	Capacity of Fresh air type indoor	Cooling	Heating
Indoor-side and Outdoor-side intake air temperature	P80	$\begin{aligned} & \text { D.B. } 21 \sim 43^{\circ} \mathrm{C}{ }^{* 2} \\ & \text { W.B. } 15.5 \sim 35^{\circ} \mathrm{C} \end{aligned}$	D.B.-10~20ㅇ *3
	P140	$\begin{aligned} & \text { D.B. } 21 \sim 43^{\circ} \mathrm{C} \text { *2 } \\ & \text { W.B. } 15.5 \sim 35^{\circ} \mathrm{C} \end{aligned}$	D.B.-5~20 ${ }^{\circ} \mathrm{C}$ *

[^2] SPECIFICATIONS

				PUMY-P100YHM PUMY-P100YHM ${ }_{1}$	PUMY-P125YHM PUMY-P125YHM 1	PUMY-P140YHM PUMY-P140YHM ${ }_{1}$
Cooling Capacity			kW	11.2	14.0	15.5
Heating Capacity			kW	12.5	16.0	18.0
Input (Cool) *3		*3	kW	3.3	4.27	5.32
Input Current (Cool) *3			A	5.28/5.02/4.84	6.83/6.49/6.26	8.51/8.09/7.80
Input (Heat) *3			kW	3.63	4.29	5.32
Input Current (Heat) *3			A	5.81/5.52/5.32	6.87/6.52/6.29	8.51/8.09/7.80
EER (Cool) *3				3.39	3.28	2.91
COP (Heat) *3				3.44	3.73	3.38
Connectable indoor units (Max.)				6	8	8
				14.5 (130\%)	18.2 (130\%)	20.2 (130\%)
				3 phase , $50 \mathrm{~Hz}, 380 / 400 / 415 \mathrm{~V}$		
				16A	16A	16A
				49 / 51	$50 / 52$	51/53
				Munsell 3Y 7.8/1.1		
Refrigerant control				Linear Expansion Valve		
Compressor				Hermetic		
Model				ANB33FDEMT		
				1.9	2.4	2.9
	Starting m			Inverter		
Crankcase heater W				-		
Heat exchanger				Plate fin coil (Anti corrosion fin treatment)		
Fan	Fan(drive) \times No.			Propeller fan $\times 2$		
	Fa motor output		kW	$0.060+0.060$		
	Airflow		$\mathrm{m}^{3} / \mathrm{min}$ (CFM)	$100(3,530)$		
Dimensions (HxWxD)		W	mm (in.)	950 (37-3/8)		
		D	mm (in.)	$330+30$ (13+1-3/16)		
		H	mm (in.)	1,350 (53-1/8)		
				140 (309)		
				R410A		
Charge			kg(lbs)	8.5 (18.7)		
Oil (Model)			L	2.3 (MEL56)		
Protection devices	High pressure protection			HP switch		
	Compressor protection			Discharge thermo, Over current detection		
	Fan motor protection			Overheating/Voltage protection		
Total Piping length (Max.)			m	120		
Farthest			m	80		
Max Height difference			m	30		*1
Chargeless length			m	50		
Piping diameter		Gas	$\phi \mathrm{mm}$	15.88 (5/8")		
		Liquid	$\phi \mathrm{mm}$	9.52 (3/8")		
Guranteed operation range			(cool)		$-5 \sim 46^{\circ} \mathrm{C} \text { DB }$	
			(heat)	$-15 \sim 15^{\circ} \mathrm{C}$ WB		

Rating conditions (JIS B 8616)
Cooling Indoor : D.B. $27^{\circ} \mathrm{C} /$ W.B. $19^{\circ} \mathrm{C}$ Outdoor: D.B. $35^{\circ} \mathrm{C} /$ W.B. $20^{\circ} \mathrm{C}$
Heating Indoor : D.B. $20^{\circ} \mathrm{C}$
Outdoor: D.B. $7^{\circ} \mathrm{C} /$ W.B. $6^{\circ} \mathrm{C}$

Note.*1. 20m:In case of installing outdoor unit lower than indoor unit.
*2. $10 \sim 46^{\circ} \mathrm{CDB}$:In case of connecting PKFY-P20/P25 type indoor unit.
*3. Electrical data is for only outdoor unit.

5-1. COOLING AND HEATING CAPACITY AND CHARACTERISTICS

5-1-1. Method for obtaining system cooling and heating capacity:

To obtain the system cooling and heating capacity and the electrical characteristics of the outdoor unit, first add up the ratings of all the indoor units connected to the outdoor unit (see table below), and then use this total to find the standard capacity with the help of the tables on 5-2.STANDARD CAPACITY DIAGRAM.
(1) Capacity of indoor unit

Model Number for indoor unit	Model 20	Model 25	Model 32	Model 40	Model 50	Model 63	Model 71	Model 80	Model 100	Model 125	Model 140
Model Capacity	22	28	36	45	56	71	80	90	112	140	160

(2) Sample calculation

(1)System assembled from indoor and outdoor unit (in this example the total capacity of the indoor units is greater than that of the outdoor unit)

- Outdoor unit PUMY-P125YHM PUMY-P125YHM 1
- Indoor unit PKFY-P25VAM-E $\times 2$, PLFY-P50VLMD-E $\times 2$
(2)According to the conditions in (1), the total capacity of the indoor unit will be: $28 \times 2+56 \times 2=168$
(3)The following figures are obtained from the 168 total capacity row of the standard capacity table (4-2.):

Capacity (kW)		Outdoor unit power consumption (kW)		Outdoor unit current (A)/400V	
Cooling	Heating	Cooling	Heating	Cooling	Heating
(A) 14.60	(B) 16.33	4.34	3.95	6.59	6.01

5-1-2. Method for obtaining the heating and cooling capacity of an indoor unit:
(1) The capacity of each indoor unit (kW) = the capacity (A) $($ or (B) $) \times \frac{\text { model capacity }}{\text { total model capacity of all indoor units }}$
(2) Sample calculation (using the system described above in 5-1-1. (2)):

During cooling:

- The total model capacity of the indoor unit is:
$2.8 \times 2+5.6 \times 2=16.8 \mathrm{~kW}$
Therefore, the capacity of PKFY-P25VAM-E and
PLFY-P50VLMD-E will be calculated as follows by using the formula in 5-1-2. (1):

Model $25=14.6 \times \frac{2.8}{16.8}=2.43 \mathrm{~kW}$
Model $50=14.6 \times \frac{5.6}{16.8}=4.87 \mathrm{~kW}$

During heating:

- The total model capacity of indoor unit is:
$3.2 \times 2+6.3 \times 2=19.0$
Therefore, the capacity of PKFY-P25VAM-E and PLFY-P50VLMD-E will be calculated as follows by using the formula in 5-1-2. (1):

Model $25=16.33 \times \frac{3.2}{19.0}=2.75 \mathrm{~kW}$
Model $50=16.33 \times \frac{6.3}{19.0}=5.41 \mathrm{~kW}$

5-2. STANDARD CAPACITY DIAGRAM

5-2-1.PUMY-P100YHM PUMY-P100YHM

*Before calculating the sum of total capacity of indoor units, please convert the value into the kW model capacity following the formula on 5-1-1.

Total capacity of indoor units	Capacity(kW)		Power Consumption(kW)		Current(A)/380V		Current(A)/400V		Current(A)/415V	
	Cooling	Heating								
56	5.60	6.30	1.57	1.87	2.52	3.00	2.39	2.85	2.31	2.75
57	5.70	6.41	1.59	1.90	2.55	3.05	2.42	2.89	2.34	2.79
58	5.80	6.53	1.62	1.92	2.60	3.08	2.47	2.93	2.38	2.82
59	5.90	6.64	1.64	1.95	2.63	3.13	2.50	2.97	2.41	2.86
60	6.00	6.75	1.66	1.98	2.66	3.17	2.53	3.02	2.44	2.91
61	6.10	6.87	1.69	2.00	2.71	3.21	2.58	3.05	2.48	2.94
62	6.20	6.98	1.71	2.03	2.74	3.26	2.61	3.09	2.51	2.98
63	6.30	7.09	1.74	2.06	2.79	3.30	2.65	3.14	2.56	3.02
64	6.40	7.20	1.76	2.08	2.82	3.34	2.68	3.17	2.59	3.05
65	6.50	7.32	1.78	2.11	2.85	3.38	2.71	3.21	2.61	3.10
66	6.60	7.43	1.81	2.14	2.90	3.43	2.76	3.26	2.66	3.14
67	6.70	7.54	1.83	2.17	2.93	3.48	2.79	3.31	2.69	3.19
68	6.80	7.66	1.86	2.20	2.98	3.53	2.83	3.35	2.73	3.23
69	6.90	7.77	1.89	2.22	3.03	3.56	2.88	3.38	2.78	3.26
70	7.00	7.88	1.91	2.25	3.06	3.61	2.91	3.43	2.81	3.30
71	7.10	8.00	1.94	2.28	3.11	3.66	2.96	3.47	2.85	3.35
72	7.20	8.11	1.97	2.31	3.16	3.70	3.00	3.52	2.89	3.39
73	7.30	8.22	1.99	2.34	3.19	3.75	3.03	3.56	2.92	3.44
74	7.40	8.33	2.02	2.37	3.24	3.80	3.08	3.61	2.97	3.48
75	7.50	8.44	2.05	2.40	3.28	3.85	3.12	3.66	3.01	3.52
76	7.60	8.56	2.08	2.43	3.33	3.90	3.17	3.70	3.05	3.57
77	7.70	8.67	2.11	2.46	3.38	3.94	3.21	3.75	3.10	3.61
78	7.80	8.78	2.13	2.49	3.41	3.99	3.24	3.79	3.13	3.66
79	7.90	8.89	2.16	2.52	3.46	4.04	3.29	3.84	3.17	3.70
80	8.00	9.00	2.19	2.55	3.51	4.09	3.34	3.88	3.22	3.74
81	8.10	9.10	2.22	2.58	3.56	4.14	3.38	3.93	3.26	3.79
82	8.20	9.20	2.25	2.61	3.60	4.18	3.43	3.97	3.30	3.83
83	8.30	9.30	2.28	2.64	3.65	4.23	3.47	4.02	3.35	3.88
84	8.40	9.40	2.31	2.67	3.70	4.28	3.52	4.07	3.39	3.92
85	8.50	9.50	2.35	2.70	3.76	4.33	3.58	4.11	3.45	3.96
86	8.60	9.60	2.38	2.74	3.81	4.39	3.62	4.17	3.49	4.02
87	8.70	9.70	2.41	2.77	3.86	4.44	3.67	4.22	3.54	4.07
88	8.80	9.80	2.44	2.80	3.91	4.49	3.72	4.26	3.58	4.11
89	8.90	9.90	2.47	2.83	3.96	4.54	3.76	4.31	3.63	4.15
90	9.00	10.00	2.51	2.86	4.02	4.58	3.82	4.35	3.68	4.20
91	9.10	10.10	2.54	2.90	4.07	4.65	3.87	4.42	3.73	4.26
92	9.20	10.22	2.57	2.93	4.12	4.70	3.91	4.46	3.77	4.30
93	9.30	10.33	2.60	2.96	4.16	4.74	3.96	4.51	3.82	4.34
94	9.40	10.45	2.64	3.00	4.23	4.81	4.02	4.57	3.88	4.40
95	9.50	10.56	2.67	3.03	4.28	4.86	4.07	4.61	3.92	4.45
96	9.60	10.67	2.71	3.06	4.34	4.90	4.13	4.66	3.98	4.49
97	9.70	10.79	2.74	3.10	4.39	4.97	4.17	4.72	4.02	4.55
98	9.80	10.90	2.78	3.13	4.45	5.02	4.23	4.77	4.08	4.59
99	9.90	11.02	2.81	3.17	4.50	5.08	4.28	4.83	4.12	4.65
100	10.00	11.13	2.85	3.20	4.56	5.13	4.34	4.87	4.18	4.70
101	10.10	11.24	2.88	3.24	4.61	5.19	4.39	4.93	4.23	4.75
102	10.20	11.36	2.92	3.27	4.67	5.24	4.45	4.98	4.29	4.80
103	10.30	11.47	2.96	3.31	4.74	5.30	4.51	5.04	4.34	4.86
104	10.40	11.59	2.99	3.34	4.79	5.35	4.55	5.08	4.39	4.90
105	10.50	11.70	3.03	3.38	4.85	5.42	4.61	5.15	4.45	4.96
106	10.60	11.81	3.07	3.41	4.91	5.46	4.67	5.19	4.51	5.00
107	10.70	11.93	3.11	3.45	4.98	5.53	4.74	5.25	4.56	5.06
108	10.80	12.04	3.14	3.48	5.03	5.58	4.78	5.30	4.61	5.11
109	10.90	12.16	3.18	3.52	5.09	5.64	4.84	5.36	4.67	5.17
110	11.00	12.27	3.22	3.56	5.15	5.70	4.90	5.42	4.73	5.22
111	11.10	12.38	3.26	3.59	5.22	5.75	4.96	5.47	4.78	5.27
112	11.20	12.50	3.30	3.63	5.28	5.81	5.02	5.52	4.84	5.32
113	11.22	12.51	3.31	3.62	5.30	5.80	5.04	5.51	4.86	5.31
114	11.24	12.53	3.31	3.61	5.30	5.78	5.04	5.50	4.86	5.30
115	11.26	12.54	3.32	3.60	5.31	5.77	5.05	5.48	4.87	5.28
116	11.28	12.55	3.32	3.59	5.31	5.75	5.05	5.47	4.87	5.27
117	11.30	12.56	3.32	3.58	5.31	5.74	5.05	5.45	4.87	5.25
118	11.32	12.57	3.33	3.56	5.33	5.70	5.07	5.42	4.89	5.22
119	11.34	12.58	3.33	3.55	5.33	5.69	5.07	5.40	4.89	5.21
120	11.36	12.60	3.34	3.54	5.35	5.67	5.08	5.39	4.90	5.19

Total capacity of indoor units*	Capacity(kW)		Power Consumption(kW)		Current(A)/380V		Current(A)/400V		Current(A)/415V	
	Cooling	Heating								
121	11.38	12.61	3.34	3.53	5.35	5.66	5.08	5.37	4.90	5.18
122	11.40	12.62	3.34	3.52	5.35	5.64	5.08	5.36	4.90	5.17
123	11.42	12.63	3.35	3.51	5.36	5.62	5.10	5.34	4.92	5.15
124	11.44	12.64	3.35	3.50	5.36	5.61	5.10	5.33	4.92	5.14
125	11.47	12.66	3.36	3.48	5.38	5.58	5.12	5.30	4.93	5.11
126	11.49	12.67	3.36	3.47	5.38	5.56	5.12	5.28	4.93	5.09
127	11.51	12.68	3.36	3.46	5.38	5.54	5.12	5.27	4.93	5.08
128	11.53	12.69	3.37	3.45	5.39	5.53	5.13	5.25	4.95	5.06
129	11.55	12.70	3.37	3.44	5.39	5.51	5.13	5.24	4.95	5.05
130	11.57	12.71	3.38	3.43	5.41	5.50	5.15	5.22	4.96	5.03
131	11.59	12.73	3.38	3.41	5.41	5.46	5.15	5.19	4.96	5.00
132	11.61	12.74	3.38	3.40	5.41	5.45	5.15	5.18	4.96	4.99
133	11.63	12.75	3.39	3.39	5.43	5.43	5.16	5.16	4.97	4.97
134	11.65	12.76	3.39	3.38	5.43	5.42	5.16	5.15	4.97	4.96
135	11.67	12.77	3.40	3.37	5.44	5.40	5.18	5.13	4.99	4.95
136	11.69	12.78	3.40	3.36	5.44	5.38	5.18	5.12	4.99	4.93
137	11.71	12.80	3.40	3.34	5.44	5.35	5.18	5.08	4.99	4.90
138	11.73	12.81	3.41	3.33	5.46	5.34	5.19	5.07	5.00	4.89
139	11.75	12.82	3.41	3.32	5.46	5.32	5.19	5.05	5.00	4.87
140	11.77	12.83	3.42	3.31	5.47	5.30	5.21	5.04	5.02	4.86
141	11.79	12.84	3.42	3.30	5.47	5.29	5.21	5.02	5.02	4.84
142	11.82	12.86	3.42	3.29	5.47	5.27	5.21	5.01	5.02	4.83
143	11.84	12.87	3.43	3.27	5.49	5.24	5.22	4.98	5.03	4.80
144	11.86	12.88	3.43	3.26	5.49	5.22	5.22	4.96	5.03	4.78
145	11.88	12.89	3.44	3.25	5.51	5.21	5.24	4.95	5.05	4.77

5-2-2.PUMY-P125YHM PUMY-P125YHM 1

*Before calculating the sum of total capacity of indoor units, please convert the value into the kW model capacity following the formula on 5-1-1.

Total capacity of indoor units	Capacity(kW)		Power Consumption(kW)		Current(A)/380V		Current(A)/400V		Current(A)/415V	
	Cooling	Heating								
70	7.00	7.88	1.80	2.04	2.88	3.27	2.74	3.10	2.64	3.00
71	7.10	8.00	1.83	2.06	2.93	3.30	2.79	3.13	2.69	3.02
72	7.20	8.11	1.85	2.09	2.96	3.35	2.82	3.18	2.72	3.07
73	7.30	8.22	1.88	2.11	3.01	3.38	2.86	3.21	2.76	3.10
74	7.40	8.33	1.91	2.14	3.06	3.43	2.91	3.26	2.81	3.14
75	7.50	8.44	1.93	2.17	3.09	3.48	2.94	3.30	2.83	3.19
76	7.60	8.56	1.96	2.19	3.14	3.51	2.98	3.33	2.88	3.22
77	7.70	8.67	1.99	2.22	3.19	3.56	3.03	3.38	2.92	3.26
78	7.80	8.78	2.01	2.25	3.22	3.61	3.06	3.42	2.95	3.30
79	7.90	8.89	2.04	2.28	3.27	3.66	3.10	3.47	3.00	3.35
80	8.00	9.00	2.07	2.30	3.32	3.69	3.15	3.50	3.04	3.38
81	8.10	9.10	2.10	2.33	3.36	3.74	3.20	3.55	3.08	3.42
82	8.20	9.20	2.12	2.36	3.40	3.78	3.23	3.59	3.11	3.46
83	8.30	9.30	2.15	2.39	3.44	3.83	3.27	3.64	3.16	3.51
84	8.40	9.40	2.18	2.42	3.49	3.88	3.32	3.68	3.20	3.55
85	8.50	9.50	2.21	2.44	3.54	3.91	3.36	3.71	3.24	3.58
86	8.60	9.60	2.24	2.47	3.59	3.96	3.41	3.76	3.29	3.63
87	8.70	9.70	2.27	2.50	3.64	4.01	3.45	3.80	3.33	3.67
88	8.80	9.80	2.30	2.53	3.68	4.06	3.50	3.85	3.38	3.71
89	8.90	9.90	2.33	2.56	3.73	4.10	3.55	3.89	3.42	3.76
90	9.00	10.00	2.36	2.59	3.78	4.15	3.59	3.94	3.46	3.80
91	9.10	10.10	2.39	2.62	3.83	4.20	3.64	3.99	3.51	3.85
92	9.20	10.22	2.42	2.65	3.88	4.25	3.68	4.03	3.55	3.89
93	9.30	10.33	2.45	2.68	3.92	4.30	3.73	4.08	3.60	3.93
94	9.40	10.45	2.49	2.71	3.99	4.34	3.79	4.12	3.66	3.98
95	9.50	10.56	2.52	2.74	4.04	4.39	3.83	4.17	3.70	4.02
96	9.60	10.67	2.55	2.77	4.08	4.44	3.88	4.21	3.74	4.07
97	9.70	10.79	2.58	2.80	4.13	4.49	3.92	4.26	3.79	4.11
98	9.80	10.90	2.62	2.83	4.20	4.54	3.99	4.30	3.85	4.15
99	9.90	11.02	2.65	2.86	4.24	4.58	4.03	4.35	3.89	4.20
100	10.00	11.13	2.68	2.89	4.29	4.63	4.08	4.40	3.93	4.24
101	10.10	11.24	2.72	2.92	4.36	4.68	4.14	4.44	3.99	4.29
102	10.20	11.36	2.75	2.96	4.40	4.74	4.18	4.50	4.04	4.34
103	10.30	11.47	2.79	2.99	4.47	4.79	4.24	4.55	4.10	4.39
104	10.40	11.59	2.82	3.02	4.52	4.84	4.29	4.59	4.14	4.43
105	10.50	11.70	2.86	3.05	4.58	4.89	4.35	4.64	4.20	4.48
106	10.60	11.81	2.89	3.08	4.63	4.94	4.40	4.68	4.24	4.52
107	10.70	11.93	2.93	3.12	4.69	5.00	4.46	4.75	4.30	4.58
108	10.80	12.04	2.96	3.15	4.74	5.05	4.50	4.79	4.34	4.62
109	10.90	12.16	3.00	3.18	4.80	5.10	4.56	4.84	4.40	4.67
110	11.00	12.27	3.04	3.21	4.87	5.14	4.62	4.88	4.46	4.71
111	11.10	12.38	3.07	3.25	4.91	5.21	4.67	4.94	4.51	4.77
112	11.20	12.50	3.11	3.28	4.98	5.26	4.73	4.99	4.56	4.81
113	11.30	12.63	3.15	3.31	5.04	5.30	4.79	5.03	4.62	4.86
114	11.40	12.75	3.19	3.35	5.11	5.37	4.85	5.09	4.68	4.92
115	11.50	12.88	3.22	3.38	5.15	5.42	4.90	5.14	4.73	4.96
116	11.60	13.00	3.26	3.42	5.22	5.48	4.96	5.20	4.78	5.02
117	11.70	13.13	3.30	3.45	5.28	5.53	5.02	5.25	4.84	5.06
118	11.80	13.25	3.34	3.49	5.35	5.59	5.08	5.31	4.90	5.12
119	11.90	13.38	3.38	3.52	5.41	5.64	5.14	5.35	4.96	5.17
120	12.00	13.50	3.42	3.55	5.47	5.69	5.20	5.40	5.02	5.21
121	12.10	13.63	3.46	3.59	5.54	5.75	5.26	5.46	5.08	5.27
122	12.20	13.75	3.50	3.62	5.60	5.80	5.32	5.51	5.14	5.31
123	12.30	13.88	3.54	3.66	5.67	5.86	5.38	5.57	5.19	5.37
124	12.40	14.00	3.58	3.70	5.73	5.93	5.44	5.63	5.25	5.43
125	12.50	14.13	3.62	3.73	5.79	5.98	5.51	5.67	5.31	5.47
126	12.60	14.25	3.66	3.77	5.86	6.04	5.57	5.73	5.37	5.53
127	12.70	14.38	3.70	3.80	5.92	6.09	5.63	5.78	5.43	5.58
128	12.80	14.50	3.74	3.84	5.99	6.15	5.69	5.84	5.49	5.63
129	12.90	14.63	3.79	3.88	6.07	6.22	5.76	5.90	5.56	5.69
130	13.00	14.75	3.83	3.91	6.13	6.26	5.82	5.95	5.62	5.74

Total capacity of indoor units	Capacity(kW)		Power Consumption(kW)		Current(A)/380V		Current(A)/400V		Current(A)/415V	
	Cooling	Heating								
131	13.10	14.88	3.87	3.95	6.19	6.33	5.88	6.01	5.68	5.80
132	13.20	15.00	3.91	3.99	6.26	6.39	5.95	6.07	5.74	5.85
133	13.30	15.13	3.96	4.02	6.34	6.44	6.02	6.11	5.81	5.90
134	13.40	15.25	4.00	4.06	6.40	6.51	6.08	6.17	5.87	5.96
135	13.50	15.38	4.04	4.10	6.47	6.57	6.14	6.23	5.93	6.02
136	13.60	15.50	4.09	4.14	6.55	6.63	6.22	6.30	6.00	6.07
137	13.70	15.63	4.13	4.17	6.61	6.68	6.28	6.34	6.06	6.12
138	13.80	15.75	4.18	4.21	6.69	6.75	6.36	6.40	6.13	6.18
139	13.90	15.88	4.22	4.25	6.75	6.81	6.42	6.46	6.19	6.24
140	14.00	16.00	4.27	4.29	6.83	6.87	6.49	6.52	6.26	6.29
141	14.02	16.01	4.28	4.28	6.84	6.86	6.50	6.51	6.27	6.28
142	14.04	16.02	4.28	4.27	6.85	6.84	6.50	6.49	6.28	6.26
143	14.06	16.03	4.28	4.26	6.85	6.82	6.51	6.47	6.28	6.24
144	14.08	16.04	4.28	4.24	6.85	6.80	6.51	6.45	6.28	6.23
145	14.10	16.06	4.28	4.23	6.86	6.78	6.51	6.43	6.29	6.21
146	14.12	16.07	4.29	4.22	6.86	6.76	6.52	6.42	6.29	6.19
147	14.15	16.08	4.29	4.21	6.86	6.74	6.52	6.40	6.29	6.17
148	14.17	16.09	4.29	4.19	6.87	6.72	6.52	6.38	6.29	6.15
149	14.19	16.10	4.29	4.18	6.87	6.70	6.53	6.36	6.30	6.14
150	14.21	16.12	4.30	4.17	6.87	6.68	6.53	6.34	6.30	6.12
151	14.23	16.13	4.30	4.16	6.88	6.66	6.53	6.32	6.30	6.10
152	14.25	16.14	4.30	4.15	6.88	6.64	6.54	6.31	6.31	6.08
153	14.27	16.15	4.30	4.13	6.88	6.62	6.54	6.29	6.31	6.07
154	14.30	16.16	4.30	4.12	6.89	6.61	6.54	6.27	6.31	6.05
155	14.32	16.17	4.31	4.11	6.89	6.59	6.55	6.25	6.32	6.03
156	14.34	16.19	4.31	4.10	6.90	6.57	6.55	6.23	6.32	6.01
157	14.36	16.20	4.31	4.09	6.90	6.55	6.55	6.21	6.32	6.00
158	14.38	16.21	4.31	4.07	6.90	6.53	6.56	6.20	6.33	5.98
159	14.40	16.22	4.32	4.06	6.91	6.51	6.56	6.18	6.33	5.96
160	14.42	16.23	4.32	4.05	6.91	6.49	6.56	6.16	6.33	5.94
161	14.45	16.25	4.32	4.04	6.91	6.47	6.57	6.14	6.34	5.92
162	14.47	16.26	4.32	4.03	6.92	6.45	6.57	6.12	6.34	5.91
163	14.49	16.27	4.32	4.01	6.92	6.43	6.57	6.10	6.34	5.89
164	14.51	16.28	4.33	4.00	6.92	6.41	6.58	6.09	6.35	5.87
165	14.53	16.29	4.33	3.99	6.93	6.39	6.58	6.07	6.35	5.85
166	14.55	16.31	4.33	3.98	6.93	6.37	6.58	6.05	6.35	5.84
167	14.57	16.32	4.33	3.97	6.93	6.35	6.59	6.03	6.36	5.82
168	14.60	16.33	4.34	3.95	6.94	6.33	6.59	6.01	6.36	5.80
169	14.62	16.34	4.34	3.94	6.94	6.32	6.59	5.99	6.36	5.78
170	14.64	16.35	4.34	3.93	6.95	6.30	6.60	5.98	6.37	5.77
171	14.66	16.36	4.34	3.92	6.95	6.28	6.60	5.96	6.37	5.75
172	14.68	16.38	4.34	3.91	6.95	6.26	6.61	5.94	6.37	5.73
173	14.70	16.39	4.35	3.89	6.96	6.24	6.61	5.92	6.38	5.71
174	14.72	16.40	4.35	3.88	6.96	6.22	6.61	5.90	6.38	5.69
175	14.75	16.41	4.35	3.87	6.96	6.20	6.62	5.88	6.38	5.68
176	14.77	16.42	4.35	3.86	6.97	6.18	6.62	5.87	6.39	5.66
177	14.79	16.44	4.36	3.84	6.97	6.16	6.62	5.85	6.39	5.64
178	14.81	16.45	4.36	3.83	6.97	6.14	6.63	5.83	6.39	5.62
179	14.83	16.46	4.36	3.82	6.98	6.12	6.63	5.81	6.40	5.61
180	14.85	16.47	4.36	3.81	6.98	6.10	6.63	5.79	6.40	5.59
181	14.87	16.48	4.36	3.80	6.98	6.08	6.64	5.77	6.40	5.57
182	14.89	16.50	4.37	3.78	6.99	6.06	6.64	5.76	6.41	5.55

5-2-3.PUMY-P140YHM PUMY-P140YHM 1

*Before calculating the sum of total capacity of indoor units, please convert the value into the kW model capacity following the formula on 5-1-1.

Total capacity of indoor units	Capacity(kW)		Power Consumption(kW)\|		Current(A)/380V		Current(A)/400V		Current(A)/415V	
	Cooling	Heating								
80	8.00	9.00	2.34	2.73	3.75	4.37	3.56	4.16	3.44	4.01
81	8.10	9.10	2.37	2.76	3.80	4.42	3.61	4.20	3.48	4.05
82	8.20	9.20	2.40	2.79	3.84	4.47	3.66	4.25	3.52	4.10
83	8.30	9.30	2.43	2.82	3.89	4.52	3.70	4.29	3.57	4.14
84	8.40	9.40	2.46	2.86	3.94	4.58	3.75	4.35	3.61	4.20
85	8.50	9.50	2.49	2.89	3.99	4.63	3.79	4.40	3.66	4.24
86	8.60	9.60	2.53	2.92	4.05	4.67	3.85	4.45	3.71	4.29
87	8.70	9.70	2.56	2.95	4.10	4.72	3.90	4.49	3.76	4.33
88	8.80	9.80	2.59	2.98	4.15	4.77	3.94	4.54	3.80	4.37
89	8.90	9.90	2.62	3.01	4.20	4.82	3.99	4.58	3.85	4.42
90	9.00	10.00	2.66	3.04	4.26	4.87	4.05	4.63	3.90	4.46
91	9.10	10.11	2.69	3.08	4.31	4.93	4.10	4.69	3.95	4.52
92	9.20	10.23	2.72	3.11	4.36	4.98	4.14	4.74	3.99	4.56
93	9.30	10.34	2.76	3.14	4.42	5.03	4.20	4.78	4.05	4.61
94	9.40	10.46	2.79	3.17	4.47	5.07	4.25	4.83	4.10	4.65
95	9.50	10.57	2.83	3.21	4.53	5.14	4.31	4.89	4.15	4.71
96	9.60	10.68	2.86	3.24	4.58	5.19	4.35	4.93	4.20	4.75
97	9.70	10.80	2.89	3.27	4.63	5.23	4.40	4.98	4.24	4.80
98	9.80	10.91	2.93	3.30	4.69	5.28	4.46	5.02	4.30	4.84
99	9.90	11.03	2.97	3.34	4.75	5.35	4.52	5.08	4.36	4.90
100	10.00	11.14	3.00	3.37	4.80	5.39	4.57	5.13	4.40	4.95
101	10.10	11.25	3.04	3.40	4.87	5.44	4.63	5.18	4.46	4.99
102	10.20	11.37	3.07	3.43	4.91	5.49	4.67	5.22	4.51	5.03
103	10.30	11.48	3.11	3.47	4.98	5.55	4.74	5.28	4.56	5.09
104	10.40	11.60	3.14	3.50	5.03	5.60	4.78	5.33	4.61	5.14
105	10.50	11.71	3.18	3.53	5.09	5.65	4.84	5.37	4.67	5.18
106	10.60	11.82	3.22	3.57	5.15	5.71	4.90	5.43	4.73	5.24
107	10.70	11.94	3.26	3.60	5.22	5.76	4.96	5.48	4.78	5.28
108	10.80	12.05	3.29	3.63	5.27	5.81	5.01	5.53	4.83	5.33
109	10.90	12.17	3.33	3.67	5.33	5.87	5.07	5.59	4.89	5.39
110	11.00	12.28	3.37	3.70	5.39	5.92	5.13	5.63	4.95	5.43
111	11.10	12.39	3.41	3.74	5.46	5.99	5.19	5.69	5.00	5.49
112	11.20	12.51	3.45	3.77	5.52	6.03	5.25	5.74	5.06	5.53
113	11.30	12.63	3.48	3.80	5.57	6.08	5.30	5.78	5.11	5.58
114	11.40	12.75	3.52	3.84	5.63	6.15	5.36	5.85	5.17	5.63
115	11.50	12.88	3.56	3.87	5.70	6.19	5.42	5.89	5.22	5.68
116	11.60	13.00	3.60	3.91	5.76	6.26	5.48	5.95	5.28	5.74
117	11.70	13.13	3.64	3.94	5.83	6.31	5.54	6.00	5.34	5.78
118	11.80	13.25	3.68	3.98	5.89	6.37	5.60	6.06	5.40	5.84
119	11.90	13.38	3.72	4.01	5.95	6.42	5.66	6.10	5.46	5.88
120	12.00	13.50	3.76	4.05	6.02	6.48	5.72	6.16	5.52	5.94
121	12.10	13.63	3.80	4.08	6.08	6.53	5.78	6.21	5.58	5.99
122	12.20	13.75	3.84	4.12	6.15	6.59	5.85	6.27	5.63	6.04
123	12.30	13.88	3.88	4.15	6.21	6.64	5.91	6.32	5.69	6.09
124	12.40	14.00	3.92	4.19	6.27	6.71	5.97	6.38	5.75	6.15
125	12.50	14.13	3.97	4.22	6.35	6.75	6.04	6.42	5.82	6.19
126	12.60	14.25	4.01	4.26	6.42	6.82	6.10	6.48	5.88	6.25
127	12.70	14.38	4.05	4.29	6.48	6.87	6.16	6.53	5.94	6.29
128	12.80	14.50	4.09	4.33	6.55	6.93	6.23	6.59	6.00	6.35
129	12.90	14.63	4.13	4.36	6.61	6.98	6.29	6.64	6.06	6.40
130	13.00	14.75	4.18	4.40	6.69	7.04	6.36	6.70	6.13	6.46
131	13.10	14.88	4.22	4.44	6.75	7.11	6.42	6.76	6.19	6.51
132	13.20	15.00	4.26	4.47	6.82	7.15	6.48	6.80	6.25	6.56
133	13.30	15.13	4.31	4.51	6.90	7.22	6.56	6.86	6.32	6.62
134	13.40	15.25	4.35	4.54	6.96	7.27	6.62	6.91	6.38	6.66
135	13.50	15.38	4.39	4.58	7.03	7.33	6.68	6.97	6.44	6.72
136	13.60	15.50	4.44	4.62	7.11	7.39	6.76	7.03	6.51	6.78
137	13.70	15.63	4.48	4.65	7.17	7.44	6.82	7.08	6.57	6.82
138	13.80	15.75	4.53	4.69	7.25	7.51	6.89	7.14	6.65	6.88
139	13.90	15.88	4.57	4.73	7.31	7.57	6.96	7.20	6.70	6.94
140	14.00	16.00	4.62	4.76	7.39	7.62	7.03	7.24	6.78	6.98
141	14.10	16.13	4.66	4.80	7.46	7.68	7.09	7.31	6.84	7.04
142	14.20	16.26	4.71	4.84	7.54	7.75	7.17	7.37	6.91	7.10
143	14.30	16.40	4.76	4.87	7.62	7.79	7.24	7.41	6.98	7.14

Total capacity of indoor units ${ }^{\circ}$	Capacity(kW)		Power Consumption(kW)		Current(A)/380V		Current(A)/400V		Current(A)/415V	
	Cooling	Heating								
144	14.40	16.53	4.80	4.91	7.68	7.86	7.31	7.47	7.04	7.20
145	14.50	16.66	4.85	4.95	7.76	7.92	7.38	7.53	7.11	7.26
146	14.60	16.80	4.89	4.99	7.83	7.99	7.44	7.59	7.17	7.32
147	14.70	16.93	4.94	5.02	7.91	8.03	7.52	7.64	7.25	7.36
148	14.80	17.06	4.99	5.06	7.99	8.10	7.59	7.70	7.32	7.42
149	14.90	17.20	5.04	5.10	8.07	8.16	7.67	7.76	7.39	7.48
150	15.00	17.33	5.08	5.14	8.13	8.23	7.73	7.82	7.45	7.54
151	15.10	17.46	5.13	5.17	8.21	8.27	7.81	7.87	7.53	7.58
152	15.20	17.60	5.18	5.21	8.29	8.34	7.88	7.93	7.60	7.64
153	15.30	17.73	5.23	5.25	8.37	8.40	7.96	7.99	7.67	7.70
154	15.40	17.86	5.28	5.29	8.45	8.47	8.04	8.05	7.75	7.76
155	15.50	18.00	5.32	5.32	8.51	8.51	8.09	8.09	7.80	7.80
156	15.51	18.01	5.32	5.31	8.52	8.49	8.10	8.08	7.81	7.79
157	15.52	18.02	5.32	5.29	8.52	8.47	8.10	8.06	7.81	7.77
158	15.54	18.04	5.33	5.28	8.52	8.45	8.11	8.04	7.81	7.74
159	15.55	18.05	5.33	5.27	8.53	8.43	8.11	8.01	7.82	7.72
160	15.57	18.06	5.33	5.25	8.53	8.40	8.12	7.99	7.82	7.70
161	15.58	18.07	5.34	5.24	8.54	8.38	8.12	7.97	7.83	7.68
162	15.60	18.09	5.34	5.22	8.54	8.36	8.12	7.95	7.83	7.66
163	15.61	18.10	5.34	5.21	8.55	8.34	8.13	7.93	7.83	7.64
164	15.62	18.11	5.34	5.20	8.55	8.32	8.13	7.91	7.84	7.62
165	15.64	18.12	5.35	5.18	8.56	8.29	8.14	7.89	7.84	7.60
166	15.65	18.14	5.35	5.17	8.56	8.27	8.14	7.87	7.85	7.58
167	15.67	18.15	5.35	5.16	8.56	8.25	8.14	7.85	7.85	7.56
168	15.68	18.16	5.35	5.14	8.57	8.23	8.15	7.83	7.85	7.54
169	15.70	18.17	5.36	5.13	8.57	8.21	8.15	7.80	7.86	7.52
170	15.71	18.19	5.36	5.11	8.58	8.18	8.16	7.78	7.86	7.50
171	15.73	18.20	5.36	5.10	8.58	8.16	8.16	7.76	7.87	7.48
172	15.74	18.21	5.37	5.09	8.59	8.14	8.17	7.74	7.87	7.46
173	15.76	18.22	5.37	5.07	8.59	8.12	8.17	7.72	7.87	7.44
174	15.77	18.24	5.37	5.06	8.59	8.10	8.17	7.70	7.88	7.42
175	15.79	18.25	5.37	5.05	8.60	8.07	8.18	7.68	7.88	7.40
176	15.80	18.26	5.38	5.03	8.60	8.05	8.18	7.66	7.89	7.38
177	15.81	18.27	5.38	5.02	8.61	8.03	8.19	7.64	7.89	7.36
178	15.83	18.29	5.38	5.00	8.61	8.01	8.19	7.62	7.89	7.34
179	15.84	18.30	5.38	4.99	8.62	7.99	8.19	7.59	7.90	7.32
180	15.86	18.31	5.39	4.98	8.62	7.96	8.20	7.57	7.90	7.30
181	15.87	18.32	5.39	4.96	8.63	7.94	8.20	7.55	7.91	7.28
182	15.89	18.34	5.39	4.95	8.63	7.92	8.21	7.53	7.91	7.26
183	15.90	18.35	5.40	4.94	8.63	7.90	8.21	7.51	7.91	7.24
184	15.92	18.36	5.40	4.92	8.64	7.88	8.22	7.49	7.92	7.22
185	15.93	18.37	5.40	4.91	8.64	7.85	8.22	7.47	7.92	7.20
186	15.95	18.39	5.40	4.89	8.65	7.83	8.22	7.45	7.93	7.18
187	15.96	18.40	5.41	4.88	8.65	7.81	8.23	7.43	7.93	7.16
188	15.97	18.41	5.41	4.87	8.66	7.79	8.23	7.41	7.93	7.14
189	15.99	18.42	5.41	4.85	8.66	7.77	8.24	7.39	7.94	7.12
190	16.00	18.44	5.41	4.84	8.66	7.74	8.24	7.36	7.94	7.10
191	16.02	18.45	5.42	4.82	8.67	7.72	8.24	7.34	7.95	7.08
192	16.03	18.46	5.42	4.81	8.67	7.70	8.25	7.32	7.95	7.06
193	16.05	18.47	5.42	4.80	8.68	7.68	8.25	7.30	7.95	7.04
194	16.06	18.49	5.43	4.78	8.68	7.66	8.26	7.28	7.96	7.02
195	16.08	18.50	5.43	4.77	8.69	7.63	8.26	7.26	7.96	7.00
196	16.09	18.51	5.43	4.76	8.69	7.61	8.27	7.24	7.97	6.98
197	16.11	18.52	5.43	4.74	8.70	7.59	8.27	7.22	7.97	6.96
198	16.12	18.54	5.44	4.73	8.70	7.57	8.27	7.20	7.97	6.94
199	16.14	18.55	5.44	4.71	8.70	7.54	8.28	7.18	7.98	6.92
200	16.15	18.56	5.44	4.70	8.71	7.52	8.28	7.15	7.98	6.90
201	16.16	18.57	5.44	4.69	8.71	7.50	8.29	7.13	7.99	6.88
202	16.18	18.59	5.45	4.67	8.72	7.48	8.29	7.11	7.99	6.86
203	16.19	18.60	5.45	4.66	8.72	7.46	8.29	7.09	7.99	6.84
204	16.21	18.61	5.45	4.65	8.73	7.43	8.30	7.07	8.00	6.82
205	16.22	18.62	5.46	4.63	8.73	7.41	8.30	7.05	8.00	6.79
206	16.24	18.64	5.46	4.62	8.73	7.39	8.31	7.03	8.01	6.77
207	16.25	18.65	5.46	4.60	8.74	7.37	8.31	7.01	8.01	6.75
208	16.27	18.66	5.46	4.59	8.74	7.35	8.31	6.99	8.01	6.73

5-3. CORRECTING COOLING AND HEATING CAPACITY

5-3-1. Correcting Changes in Air Conditions

(1)The performance curve charts (Figure 1, 2) show the change ratio of capacity and input (power consumption) according to the indoor and outdoor temperature condition when define the rated capacity (total capacity) and rated input under the standard condition in standard piping length (5 m) as " 1.0 ".

- Standard conditions:

Rated cooling capacity	Indoor D.B. $27^{\circ} \mathrm{C} /$ W.B. $19^{\circ} \mathrm{C}$ Outdoor D.B. $35^{\circ} \mathrm{C}$
Rated heating capacity	Indoor D.B. $20^{\circ} \mathrm{C}$ Outdoor D.B. $7^{\circ} \mathrm{C} /$ W.B. $6^{\circ} \mathrm{C}$

- Use the rated capacity and rated input given in " $5-2$. ."
- The input is the single value on the side of the outdoor unit; the input on the sides of each indoor unit must be added to obtain the total input.
(2)The capacity of each indoor unit may be obtained by multiplying the total capacity obtained in (1) by the ratio between the individual capacity at the rated time and the total capacity at the rated time.

[^3]
(3)Capacity correction factor curve

Figure 1. PUMY-P100YHM PUMY-P100YHM1 PUMY-P125YHM PUMY-P125YHM1 PUMY-P140YHM PUMY-P140YHM ${ }_{1}$

Cooling performance curve

Outdoor <D.B. ${ }^{\circ}$ C>

Figure 2. PUMY-P100YHM PUMY-P100YHM 1 PUMY-P125YHM PUMY-P125YHM 1 PUMY-P140YHM PUMY-P140YHM 1

Heating performance curve

Heating
Capacity
(ratio)

Heating
Power consumption
(ratio)

Outdoor <W.B. ${ }^{\circ} \mathrm{C}$ >

5-3-2. Correcting Capacity for Changes in the Length of Refrigerant Piping

(1) During cooling, to obtain the ratio (and the equivalent piping length) of the outdoor units rated capacity and the total in-use indoor capacity, first find the capacity ratio corresponding to the standard piping length from Figures 3 at first, and then multiply by the cooling capacity from Figure 1 to obtain the actual capacity.
(2) During heating, to find the equivalent piping length, first find the capacity ratio corresponding to standard piping length from Figure 3, and then multiply by the heating capacity from Figure 2 to obtain the actual capacity.
(1) Capacity CORRECTION CURVE

(2) Method for Obtaining the Equivalent Piping Length

Equivalent length for type P100-125-140 $=$ (length of piping to farthest indoor unit) $+(0.3 \times$ number of bends in the piping $)(\mathrm{m})$ Length of piping to farthest indoor unit: type P100~P140.....80m

5-3-3. Correction of Heating Capacity for Frost and Defrosting

If heating capacity has been reduced due to frost formation or defrosting, multiply the capacity by the appropriate correction factor from the following table to obtain the actual heating capacity.

Correction factor diagram

Outdoor Intake temperature (W.B. ${ }^{\mathrm{C}}$)	6	4	2	0	-2	-4	-6	-8	-10
Correction factor	1.0	0.98	0.89	0.88	0.89	0.9	0.95	0.95	0.95

5-4.NOISE CRITERION CURVES

PUMY-P100YHM
PUMY-P100YHM

MODE	SPL(dB)	LINE
COOLING	49	\circ
HEATING	51	\bullet

PUMY-P140YHM PUMY-P140YHM 1

PUMY-P125YHM PUMY-P125YHM 1

MODE	SPL(dB)	LINE
COOLING	50	\multimap
HEATING	52	\bullet

PUMY-P100YHM PUMY-P100YHM PUMY-P125YHM PUMY-P125YHM 1 PUMY-P140YHM PUMY-P140YHM 1

Cautions when Servicing
1 WARNING: When the main supply is turned off, the voltage [540 V] in the main capacitor will drop to 20 V in approx. 5 minutes (input voltage: 380 V). When servicing, make sure that LED1, LED2 on the outdoor circuit board goes out, and then wait for at least 5 minute.
Components other than the outdoor board may be faulty: Check and take corrective action, referring to the service manual.
Do not replace the outdoor board without checking.
NOTES:

1. Refer to the wiring diagrams of the indoor units for details on wiring of each indoor unit.

Self-diagnosis function
The indoor and outdoor units can be diagnosed automatically using the self-diagnosis switch
(SW1) and LED1, LED2 (LED indication) found on the multi-controller of the outdoor unit.

LED indication : Set all contacts of SW1 to OFF.
During normal operation
The LED indicates the drive state of the controller in the outdoor unit.

Bit	1	2	3	4	5	6	7	8
Indication	Compressor operated	52 C	21 S 4	SV1	(SV2)	-	-	Always lit

When fault requiring inspection has occurred
The LED alternately indicates the inspection code and the location of the unit in which the fault has occurred.

8-1. TRANSMISSION SYSTEM SETUP

8-2. REFRIGERANT SYSTEM DIAGRAM

 PUMY-P100YHM PUMY-P100YHMPUMY-P125YHM PUMY-P125YHM 1 PUMY-P140YHM PUMY-P140YHM 1
4.............. Refrigerant flow in cooling
\longleftarrow Refrigerant flow in heating

Capillary tube for oil separator : $\phi 2.5 \times \phi 0.8 \times \mathrm{L} 1000$
Refrigerant pipng specifications <dimensions of flared connector>

Capacity		Item	Liquid piping
Indoor unit	P20, P25, P32, P40, P50	$\phi 6.35<1 / 4 \mathrm{~F}>$	Gas pipng
	P63, P80, P100	$\phi 9.52<3 / 8 \mathrm{~F}>$	$\phi 12.7<1 / 2 \mathrm{~F}>$
	P100, P125, P140		$\phi 9.52<3 / 8 \mathrm{~F}>$

8-3. SYSTEM CONTROL

8-3-1. Example for the System

- Example for wiring control cables, wiring method and address setting, permissible lengths, and the prohibited items are listed in the standard system with detailed explanation.
The explanation for the system in this section : Use one single outdoor unit and multiple outdoor units for M-NET remote control system. Use one single outdoor unit and multiple indoor units in the multiple outdoor units for the M-NET remote control system.
A. Example of a M-NET remote controller system (address setting is necessary.)
 position on the remote controller.

2. Operation using two remote controllers

3. Group operation
 together by one remote controller

Wiring Method and Address Setting
a. Use feed wiring to connect terminals M1 and M2 on transmission cable block (TB3) for the outdoor unit (OC) to terminals M1 and M2 on the transmission cable block (TB5) of each indoor unit (IC). Use non-polarized two wire.
b. Connect terminals M1 and M2 on transmission cable terminal block (TB5) for each indoor unit with the terminal block (TB6) for the remote controller (RC).
c. Set the address setting switch (on outdoor unit P.C.B) as shown below.

Unit	Range	Setting Method
Indoor unit (IC)	001 to 050	-
Outdoor unit (OC)	051 to 100	Use the most recent address of all the indoor unit plus 50.
Remote controller (RC)	101 to 150	Indoor unit address plus 100.

a. Same as above.
b. Same as above.
c. Set address switch (on outdoor unit P.C.B) as shown below.

Unit	Range	Setting Method
Indoor Unit (IC)	001 to 050	
Outdoor unit (OC)	051 to 100	Use the most recent address of all the indoor units plus 50.
Main Remote Controller (RC)	101 to 150	Indoor unit address plus 100.
Sub Remote Controller (RC)	151 to 200	Indoor unit address plus 150.

a. Same as above.

b. Connect terminals M1 and M2 on transmission cable terminal block (TB5) of the IC main unit with the most most recent address within the same indoor unit (IC) group to terminal block (TB6) on the remote controller
c. Set the address setting switch (on outdoor unit P.C.B) as shown below.

Unit	Range	Setting Method
IC (Main)	001 to 050	Use the most recent address within the same group of indoor units.
IC (Sub)	001 to 050	Use an address, other than that of the IC (Main) from among the units within the same group of indoor units. This must be in sequence with the IC (Main).
Outdoor Unit	051 to 100	Use the most recent address of all the indoor units plus 50.
Main Remote Controller	101 to 150	Set at an IC (Main) address within the same group plus 100.
Sub Remote Controller	151 to 200	Set at an IC IC (Main) address within the same group plus 150.

d. Use the indoor unit (IC) within the group with the most functions as the IC (Main) unit.

Combinations of 1through 3 above are possible.

- Name, Symbol and the Maximum Remote controller Units for Connection

Name	Symbol	Maximum units for connection
Outdoor unit	OC	
Indoor unit	IC	One OC unit can be connect to 1-8 IC units (P100YHM : 1-6 IC units)
M-NET remote controller	RC	Maximum two RC for one indoor unit, Maximum 16 RC for one OC

Permissible Lengths	Prohibited items
Longest transmission cable length ($1.25 \mathrm{~mm}^{2}$) $L_{1}+L_{2}, L_{2}+L_{3}, L_{3}+L_{1} \leqq 200 m$ Remote controller cable length 1. If 0.5 to $1.25 \mathrm{~mm}^{2}$ $\ell 1, \quad \ell 2 \leqq 10 \mathrm{~m}$ 2. If the length exceeds 10 meters, the exceeding section should be $1.25 \mathrm{~mm}^{2}$ and that section should be a value within the total extension length of the transmission cable and maximum transmission cable length. (L3)	- M-NET remote controller(RC) and MA remote controller(MA) cannot be used together. - Do not connect anything with TB15 of indoor unit(IC).
Same as above	
Same as above	

B. Example of a group operation system with two or more outdoor units and a M-NET remote controller. (Address settings are necessary.)

a. Always use shielded wire when making connections between the outdoor unit (OC) and the indoor unit (IC), as well for all OC-OC, and IC-IC wiring intervals.
b. Use feed wiring to connect terminals M1 and M2 and the ground terminal on the transmission cable terminal block (TB3) of each outdoor unit (OC) to terminals M1 and M2 on the terminal S on the transmission cable block of the indoor unit (IC).
c. Connect terminals M1 and M2 on the transmission cable terminal block of the indoor unit (IC) that has the most recent address within the same group to the terminal block on the remote controller (RC).
d. Connect together terminals M1, M2 and terminal S on the terminal block for central control (TB7) for the outdoor unit (OC).
e. DO NOT change the jumper connector CN41 on MULTI controller board.
f. The earth processing of S terminal for the centralized control terminal block(TB7) is unnecessary. Connect the terminal S on the power supply unit with the earth.
g. Set the address setting switch as follows.

Unit	Range	Setting Method
IC (Main)	01 to 00	Use the most recent address within the same group of indoor units.
IC (Sub)	01 to 50	Use an address, other than that of the IC (Main) from among the units within the same group of indoor units. This must be in sequence with the IC (Main).
Outdoor Unit	51 to 100	Use the most recent address of all the indoor units plus 50. "The address automatically becomes "100" if it is set as " $01-50$ ".
Main Remote Controller	101 to 150	Set at an IC (Main) address within the same group plus 100.
Sub Remote Controller	151 to 200	Set at an IC (Main) address within the same group plus 150.
MA Remote Controller	-	Unnecessary address setting (Necessary main/ sub setting)

h. The group setting operations among the multiple indoor units is done by the remote controller (RC) after the electrical power has been turned on.

- Name, Symbol, and the Maximum Units for Connection

C. Example of a MA remote controller system (address setting is not necessary.)

NOTE : In the case of same group operation, need to set the address that is only main indoor unit.

Example of wiring control cables	Wiring Method and Address Settin
1. Standard operation - One remote controller for each indoor unit.	a. Use feed wiring to connect terminals M1 and M2 on transmission cable block (TB3) for the outdoor unit (OC) to terminals M1 and M2 on the transmission cable block (TB5) of each indoor unit (IC). Use non-polarized two wire. b. Connect terminals 1 and 2 on transmission cable terminal block (TB15) for each indoor unit with the terminal block for the MA remote controller (MA).
2. Operation using two remote controllers for each indoor unit.	a. The same as above. b. The same as above. c. In the case of using tow remote controllers, connect terminals 1 and 2 on transmission cable terminal block (TB15) for each indoor unit with the terminal block for tow remote controllers. - Set the sub remote controller position for one of MA remote controller's main switch. Refer to the installation manual of MA remote controller
3. Group operation together by one remote controller	a. The same as above. b. The same as above. c. Connect terminals 1 and 2 on transmission cable terminal block (TB15) of each indoor unit, which is doing group operation with the terminal block the MA remote controller. Use non-polarized tow wire. d. In the case of same group operation, need to set the address that is only main indoor unit. Please set the address of the indoor unit with the most functions in the same group in the number that 01-50 is young.
Combinations of 1through 3 above are possible.	

Permissible Lengths	Prohibited items		
Longest transmission cable length $\mathrm{L} 1+\mathrm{L} 2 \leqq 200 \mathrm{~m}$ ($1.25 \mathrm{~mm}^{2}$) MA remote controller cable length $\ell 1, \quad \ell 2 \leqq 200 \mathrm{~m}\left(0.3 \sim 1.25 \mathrm{~mm}^{2}\right)$			The MA remote controller and the M-NET remote controller cannot be used together with the indoor unit the of the same group.
Longest transmission cable length The same as above. MA remote controller cable length $\begin{aligned} & \ell 3+\ell 4, \ell 5+\ell 6 \leqq 200 \mathrm{~m} \\ & \left(0.3 \sim 1.25 \mathrm{~mm}^{2}\right) \end{aligned}$			Three MA remote controller or more cannot be connect with the indoor unit of the same group.
Longest transmission cable length The same as above. MA remote controller cable length $\ell 7+\ell 8 \leqq 200 \mathrm{~m}\left(0.3 \sim 1.25 \mathrm{~mm}^{2}\right)$			The second MA remote control is connected with the terminal block(TB15) for the MA remote control of the same indoor unit(IC) as the first remote control.

D. Example of a group operation with two or more outdoor units and a MA remote controller. (Address settings are necessary.)

a. Always use shielded wire when making connections between the outdoor unit (OC) and the indoor unit (IC), as well for all OC-OC, and IC-IC wiring intervals.
b. Use feed wiring to connect terminals M1 and M2 and the ground terminal on the transmission cable terminal block (TB3) of each outdoor unit (OC) to terminals M1 and M2 on the terminal S on the transmission cable block of the indoor unit (IC).
c. Connect terminals M1 and M2 on the transmission cable terminal block of the indoor unit (IC) that has the most recent address within the same group to the terminal block on the remote controller (RC).
d. Connect together terminals M1, M2 and terminal S on the terminal block for central control (TB7) for the outdoor unit (OC).
e. DO NOT change the jumper connector CN41 on MULTI controller board.
f. The earth processing of S terminal for the centralized control terminal block(TB7) is unnecessary.

Connect the terminal S on the power supply unit with the earth.
g. Set the address setting switch as follows.

Unit	Range	Setting Method
IC (Main)	01 to 00	Use the most recent address within the same group of indoor units.
IC (Sub)	01 to 50	Use an address, other than that of the IC (Main) from among the units within the same group of indoor units. This must be in sequence with the IC (Main).
Outdoor Unit	01 to 100	Use the most recent address of all the indoor units plus 50. *The address automatically becomes "100" if it is set as "01-50".
Main Remote Controller	101 to 150	Set at an IC (Main) address within the same group plus 100.
Sub Remote Controller	151 to 200	Set at an IC (Main) address within the same group plus 150.
MA Remote Controller	-	Unnecessary address setting (Necessary main/ sub setting)

h. The group setting operations among the multiple indoor units is done by the remote controller (RC) after the electrical power has been turned on.

- Name, Symbol, and the Maximum Units for Connection

9-1. CHECK POINTS FOR TEST RUN

9-1-1. Procedures of test run

(1) Before test run, make sure that following work is completed.

- Installation related :

Make sure that the panel of cassette type and electrical wiring is done. Otherwise electrical functions like auto vane will not operate normally.

- Piping related :

Perform leakage test of refrigerant and drain piping.
Make sure that all joints are perfectly insulated.
Check stop valves on both liquid and gas side for full open.

- Electrical wiring related :

Check ground wire, transmission cable, remote controller cable, and power supply cable for secure connection.
Make sure that all switch settings of address or adjustments for special specification systems are correctly settled.
(2) Safety check :

With the insulation tester of 500 V , inspect the insulation resistance.
Do not touch the transmission cable and remote controller cable with the tester.
The resistance should be over $1.0 \mathrm{M} \Omega$. Do not proceed inspection if the resistance in under $1.0 \mathrm{M} \Omega$.
Inspect between the outdoor unit power supply terminal block and ground first, metallic parts like refrigerant pipes or the electrical box next, then inspect all electrical wiring of outdoor unit, indoor unit, and all linked equipment.
(3) Before operation :
a) Turn the power supply switch of the outdoor unit to on for compressor protection. For a test run, wait at least 12 hours from this point.
b) Register control systems into remote controller(s). Never touch the on/ off switch of the remote controller(s). Refer to " 9-1-2 M-NET Remote Controller Settings" as for settings . In MA remote controller(s), this registration is unnecessary.
(4) More than 12 hours later from power supply to the outdoor unit, turn all power switch to on for test run. Perform test run according to the "Operation procedure" table of the bottom of this page. While test running, make test run reports .
(5) When you deliver the unit after test run, instruct the end user for proper usage of the system using owners' manual and the test run report you made to certificate normal operation. If abnormalities are detected during test run, refer to "9-1-3 Countermeasures for Error During Test Run". As for DIP switch setting of outdoor unit, refer to" 9-5. INTERNAL SWITCH FUNCTION TABLE".

	Operation procedure
(1)	Turn on the main power supply the all units at least 12 hours before test run. "HO" appears on display panel for 3 min .
(2)	12 hours later, press TEST RUN button twice to perform test run. "TEST RUN " appears on display panel.
(3)	Press OPERATION SWITCH button to make sure that air blows out.
(4)	Select Cooling (or Heating) by OPERATION SWITCH button to make sure that cool (or warm) air blow out.
(5)	Press Fan speed button to make sure that fan speed in changed by the button.
(6)	Press AIR DIRECTION button or LOUVER button to make sure that air direction is adjustable(horizontal, downward, upward, and each angle).
(7)	Check outdoor fans for normal operation.
(8)	Check interlocked devices (like ventilator) for normal operation, if any. This is the end of test run operation.
(9)	Press ON/OFF button to stop and cancel test run.
	E 1 : If error code appears on remote controller or remote controller malfunction, refer to "9-1-3 Countermeasures for Error During Run". E 2 : During test run operation 2-hours off timer activates automatically and remaining time is on remote controller and test run stops 2 later. E 3 : During test run, the indoor liquid pipe temperature is displayed on remote controller instead of room temperature. E 4 : Depend on a model, "This function is not available" is appears when air direction button is pressed, however, this is not malfunction.

9-1-2. Special Function Operation and Settings (for M-NET Remote Controller)

- It is necessary to perform "group settings" and "paired settings" at making group settings of different refrigerant systems (multiple outdoor unit).
(A) Group settings: Enter the indoor unit controlled by the remote controller, check the content of entries, and clear entries, etc.
(B) Paired settings: Used to set the linked operation of a Lossnay unit.
(1) Entering address: Follow the steps below to enter the addresses of the indoor unit using the remote controller.

a) Group settings

- Turning off the remote controller: Press the ON/OFF button to stop operation (the indicator light will go off).
- Changing to indoor unit address display mode: If the FILTER and buttons on the remote controller are pressed simultaneously and held for two seconds, the display shown in Figure 1 will appear.
- Changing address: Press the temperature adjustment Δ buttons to change the displayed address to the address to be entered.
- Entering the displayed address: Press the TEST RUN button to enter the indoor unit with the displayed address. The type of the unit will be displayed as shown in Figure 2 if entry is completed normally. If a selected indoor unit does not exist, an error signal will be displayed as shown in Figure 3. When this happens, check whether the indoor unit actually exists and perform entry again.
- Returning to the normal mode after completing entry: Press the FILTER and buttons simultaneously and hold for two seconds to return to the normal mode.

Figure 1 (A) Group setting display

Figure 2 Normal completion of entry

Type of unit is displayed

Figure 3 Entry error signal

Flashing " 88 " indicates entry error

b) Paired Settings

- Turn off the remote controller: Press the remote controller's ON/OFF button to turn it off (the indicator light will go off).
- Put in indoor unit address display mode: Press the FILTER and buttons on the remote controller simultaneously and hold for two seconds.
*The above steps are the same as when making group settings (A).
- Changing to the linked operation unit address display state: The display shown in Figure 4 will appear when the button on the remote control is pressed.
- Displaying the address of the Lossnay unit and linked indoor unit: In this situation, the indoor unit number will be the lowest address of the group. The Lossnay unit will not operate if this setting is incorrect.
*ilf the temperature adjustment $\Delta \subset$ buttons are pressed, the address may be changed to the indoor unit that are to be linked.
*If the time setting $\Delta \subset$ buttons are pressed, the address of the linked units may be changed to the address where it is desired to enter the Lossnay .
- Linking the Lossnay and the indoor unit: The display shown in Figure 5 will appear when the TEST RUN button is pressed. The indoor unit whose address is displayed and the Lossnay unit with a linked address will operate in a linked manner.
*if it is desired to display the address of the Lossnay in the indoor unit address, display the indoor unit address in the linked unit address, and the above content will also be recorded.
* Apart from the indoor unit with the lowest address in the group, display and enter the addresses of the other indoor unit that are to be linked with the Lossnay unit.
- Returning to the normal mode after completing entry: Press the FILTER and buttons on the remote controller simultaneously and hold for two seconds to return to the normal mode.

Figure 4 (B) Making paired settings

The addresses of indoor unit and linked units are displayed simultaneously.

Figure 5 Completing normal entry

These alternating IC or LC displays will appear when entry is completed normally.

A flashing " 88 " will appear if there is a problem with the entry (indicating that the unit does not exist).
(2) Address check: Refer to section (1) regarding address entry.
a) In making group settings:

- Turn off the remote controller: Press the remote controller's ON/OFF button to stop operation (the indicator light will go off).
- Locate the indoor unit address display mode: Press the FILTER and buttons on the remote controller simultaneously and hold for two seconds.
- Display indoor unit address: The entered indoor units address and type will be displayed each time the button is pressed. * When one entry is made, only one address will be displayed no matter how many times the \mathcal{O} button is pressed.
- Returning to the normal mode after completing check: Simultaneously press the FILTER and buttons on the remote controller and hold for two seconds to return to the normal mode.

b) In making paired settings:

- Turn off the remote controller: Press the remote controller's ON/OFF button to stop operation (the indicator light will go off).
- Put in indoor unit address display mode: Press the FILTER and buttons on the remote controller simultaneously and hold for two seconds.
- Changing to the linked operation unit address display state: Press the $\boldsymbol{R}+\boldsymbol{\circ} \circ$ button on the remote control.
- Displaying the address of the indoor unit to be checked: Change the address to that of the indoor unit to be checked by pressing the temperature adjustment buttons $\square \boldsymbol{\rightharpoonup}$.
- Displaying the address of the linked Lossnay unit: Press the \mathcal{O} button to display the addresses of the linked Lossnay and indoor unit in alternation.
- Displaying the addresses of other entered units: The addresses of the other entered units will be displayed in alternating fashion after resting the \mathcal{O} button again.
- Returning to the normal mode after completing the check: Simultaneously press the FILTER and buttons on the remote controller and hold for two seconds to return to the normal mode.
(3) Clearing an address: Refer to section (1) regarding the address entry and section (2) regarding checking addresses.
a) In making group settings:
- Turn off the remote controller: The procedure is same as a) in (2) Address check.
- Put in the indoor unit address display mode: The procedure is same as a) in (2) Address check.
- Displaying the indoor unit address to be cleared: The procedure is same as a) in (2) Address check.
- Clearing indoor unit address :Pressing the $\begin{gathered}\text { age.e.e.ef button on the remote controller twice will clear the address entry of the }\end{gathered}$ displayed indoor unit, resulting in the display shown in Figure 6.
The display shown in Figure 7 will appear if an abnormality occurs and the entry is not cleared. Please repeat the clearing procedure.
- Returning to the normal mode after clearing an address: The procedure is same as a) in (2) Address check.

Figure 6 Display after address has been cleared normally

"--" will appear in the room temperature display location.

Figure 7 Display when an abnormality has occurred during clearing

" 88 " will appear in the room temperature display location.

b) In making paired settings:

- Turn off the remote controller: The procedure is same as \mathbf{b}) in (2) Address check.
- Put into the indoor unit address display mode: The procedure is same as \mathbf{b}) in (2) Address check.
- Put into the linked unit address display mode: The procedure is same as \mathbf{b}) in (2) Address check.
- Display the address of the Lossnay unit or the indoor unit to be cleared.
 entry of the displayed indoor unit, resulting in the display shown in Figure 8.
- Returning to the normal mode after clearing an address: The procedure is same as \mathbf{b}) in (2) Address check.

Figure 8 Display after address has been cleared normally

9-1-3. Countermeasures for Error During Test Run

- If a problems occurs during test run, a code number will appear in the temperature display area on the remote controller (or LED on the outdoor unit), and the air conditioning system will automatically cease operating.
Determine the nature of the abnormality and apply corrective measures.

Check code	Trouble	Detected unit			Remarks
		Indoor	Outdoor	$\begin{aligned} & \text { Remote } \\ & \text { controller } \end{aligned}$	
0403	Serial transmission trouble		\bigcirc		Outdoor unit Multi controller board ~ Power board communication trouble
1102	Discharge temperature trouble		\bigcirc		Check delay code 1202
1300	Low Pressure trouble		\bigcirc		Check delay code 1400
1302	High pressure trouble		\bigcirc		Check delay code 1402
1500	Excessive refrigerant replenishment		\bigcirc		Check delay code 1600
1501	Insufficient refrigerant trouble		\bigcirc		Check delay code 1601
1505	Vacuum operation protection		\bigcirc		
2502	Drain pump trouble	\bigcirc	\bigcirc		
2503	Drain sensor trouble (THd)	\bigcirc			
4100	Overcurrent trouble (Overload, compressor lock)		\bigcirc		Check delay code 4350
4115	Power synchronization signal trouble		\bigcirc		Check delay code 4165
4116	Fan controller trouble (Indoor unit)	\bigcirc			
4220	Inverter trouble		\bigcirc		Check delay code 4320
4230	Overheat protection of radiator panel		\bigcirc		Check delay code 4330
4250	Power module trouble or Overcurrent trouble		\bigcirc		Check delay code 4350
4400	Fan controller trouble (Outdoor)		\bigcirc		Check delay code 4500
5101	Air inlet sensor trouble (TH21) or	\bigcirc			
	Discharge temperature sensor trouble (TH4)		\bigcirc		Check delay code 1202
5102	Liquid pipe temp.sensor trouble (TH22) or	\bigcirc			
	Low pressure saturated temp.sensor trouble (TH6)		\bigcirc		Check delay code 1211
5103	Gas pipe temperature sensor trouble (TH23)	\bigcirc			
5105	Piping temperature sensor trouble (TH3)		\bigcirc		Check delay code 1205
5106	Outdoor temperature sensor trouble (TH7)		\bigcirc		Check delay code 1221
5110	Radiator panel temperature sensor trouble (TH8)		\bigcirc		Check delay code 1214
5201	Pressure sensor trouble (63HS)		\bigcirc		Check delay code 1402
5300	Current sensor trouble		\bigcirc		Check delay code 4310
6600	Dupricated unit address setting	\bigcirc	\bigcirc	\bigcirc	Only M-NET Remote controller is detected.
6602	Transmission error (Transmission processor hardware error)	\bigcirc	\bigcirc	\bigcirc	Only M-NET Remote controller is detected.
6603	Transmission error (Transmission route BUSY)	\bigcirc	\bigcirc	\bigcirc	Only M-NET Remote controller is detected.
6606	Transmission and reception error (Communication trouble with transmission processor)	\bigcirc	\bigcirc	\bigcirc	Only M-NET Remote controller is detected.
6607	Transmission and reception error (No ACK error)	\bigcirc		\bigcirc	Only M-NET Remote controller is detected. ※
6608	Transmission and reception error (No responsive frame error)	\bigcirc		\bigcirc	Only M-NET Remote controller is detected. ※
6831	MA communication receive signal error (no receive signal)	\bigcirc		\bigcirc	Only MA Remote controller is detected.
6832	MA communication send signal error (starting bit derection error)	\bigcirc		\bigcirc	Only MA Remote controller is detected.
6833	MA communication send error (H/W error)	\bigcirc		\bigcirc	Only MA Remote controller is detected.
6834	MA communication receive error (Synchronous recovery error)	\bigcirc		\bigcirc	Only MA Remote controller is detected.
7100	Total capacity error		\bigcirc		
7101	Capacity code error	\bigcirc	\bigcirc		
7102	Connecting unit number error		\bigcirc		
7105	Address set error		\bigcirc		
7111	Remotecontroller sensor trouble			\bigcirc	

NOTE)

When the outdoor unit detects No ACK error/ No responsive frame error, an object indoor unit is treated as a stop, and not assumed to be abnormal.

Self-diagnosis function

The indoor and outdoor units can be diagnosed automatically using the self-diagnosis switch (SW1) and LED1, LED2 (LED indication) found on the multi-controller of the outdoor unit.
LED indication : Set all contacts of SW1 to OFF.
During normal operation
The LED indicates the drive state of the controller in the outdoor unit.

Bit	1	2	3	4	5	6	7	8
Indication	Compressor operated	52 C	21 S 4	SV1	(SV2)	-	-	Always lit

[Example]
When the compressor and SV1 are turned during cooling operation.

Display	Meaning and detecting method	Causes	Check points
1102	Abnormal high discharging temperature Abnormal if discharge temperature thermistor (TH4) exceeds $125^{\circ} \mathrm{C}$ or $110^{\circ} \mathrm{C}$ continuously for 5 minutes. Abnormal if pressure detected by high pressure sensor and converted to saturation temperature exceeds $40^{\circ} \mathrm{C}$ during defrosting and discharge temperature thermistor (TH 4) exceeds $110^{\circ} \mathrm{C}$.	(1) Over-heated compressor operation caused by shortage of refrigerant (2) Defective operation of stop valve (3) Defective thermistor (4) Defective outdoor controller board (5) Defective action of linear expansion valve	(1) Check intake super heat. Check leakage of refrigerant. Charge additional refrigerant. (2) Check if stop valve is full open. (3)(4) Put the power off and check if 5101 is displayed when the power is put again. When 5101 is displayed, refer to "Check : points" for 5101. (5) Check linear expansion valve.
1300	Abnormal low pressure (63L worked) Abnormal if 63 L is worked (under- 0.03 MPa) during compressor operation. 63L: Low-pressure switch	(1) Stop valve of outdoor unit is closed during operation. (2) Disconnection or loose connection of connector (63L) on outdoor controller board (3) Disconnection or loose connection of 63L (4) Defective outdoor controller board (5) Leakage or shortage of refrigerant (6) Malfunction of linear expansion valve	(1) Check stop valve. (2)~(4) Check the connector (63L) on outdoor controller board. (5) Correct to proper amount of refrigerant. (6) Check linear expansion valve.
1302	(1) Abnormal high pressure (High-pressure switch 63 H worked) Abnormal if high-pressure switch 63 H worked ($※$) during compressor operation. ※ 4.15 MPa 63H: High-pressure switch (2) Abnormal High pressure (High - pressure sensor 63HS detect) Abnormal if high-pressure pressure sensor detects 4.31 MPa or more (or over 4.15 MPa for 3 minutes) during the compressor operation.	(1) Short cycle of indoor unit (2) Clogged filter of indoor unit (3) Decreased airflow caused by dirt of indoor fan (4) Dirt of indoor heat exchanger (5) Locked indoor fan motor (6) Malfunction of indoor fan motor (7) Defective operation of stop valve (Not full open) (8) Clogged or broken pipe (9) Locked outdoor fan motor (10) Malfunction of outdoor fan motor (11) Short cycle of outdoor unit (12) Dirt of outdoor heat exchanger (13) Decreased airflow caused by defective inspection of outside temperature thermistor (It detects lower temperature than actual temperature.) (44) Disconnection or contact failure of connector $(63 \mathrm{H})$ on outdoor controller board (15) Disconnection or contact failure of 63 H connection (16) Defective outdoor controller board (17) Defective action of linear expansion valve (18) Malfunction of fan driving circuit (19) Solenoid valve (SV1) performance failure (High-pressure pressure cannot be controlled by SV1) (20) High-pressure pressure sensor defective (2) High-pressure pressure sensor input circuit defective in multi controller board.	(1)~(6) Check indoor unit and repair defectives. (7) Check if stop valve is full open. (8) Check piping and repair defectives. (9)~(12) Check outdoor unit and repair defectives. (13) Check the inspected temperature of outside temperature thermistor on LED display. (14) ~(16) Check the connector $(63 \mathrm{H})$ on outdoor controller board. (17) Check linear expansion valve. (18) Replace outdoor controller board. (99) Check the solenoid valve performance. (20) Check the high-pressure pressure sensor. (21) Check the high-pressure pressure sensor.
1500	Abnormality of super heat due to low discharge temperature Abnormal if discharge super heat is continuously detected less than or equal to $-15^{\circ} \mathrm{C}$ even though linear expansion valve has minimum open pulse after compressor starts operating for 10 minutes.	(1) Disconnection or loose connection of discharge temperature thermistor. (TH4) (2) Defective holder of discharge temperature thermistor.	(1)(2) Check the installation conditions of discharge temperature thermistor (TH4).

Display	Meaning and detecting method	Causes	Check points
2502	Malfunction of drain pump (DP) (1) Suspensive abnormality, if thermistor of drain sensor is let heat itself and temperature rises slightly. Turn off compressor and indoor fan. (2) Drain pump is abnormal if the condition above is detected during suspensive abnormality. <2502> is displayed. (3) Constantly detected during drain pump operation.	(1) Malfunction of drain pump (2) Defective drain Clogged drain pump Clogged drain pipe (3) Attached drop of water at the drain sensor - Drops of drain trickles from lead wire. - Clogged filter is causing wave of drain. (4) Defective indoor controller board.	(1) Check if drain-up machine works. (2) Check drain function. (3) Check the setting of lead wire of drain sensor and check clogs of the filter. (4) Replace indoor controller board if drain pump operates with the line of drain sensor connector CN31-1 and 2 is shortcircuited and abnormality reappears. Turn the power off, and on again to operate after check.
	(4) The unit has a forced outdoor unit stop abnormality when the following conditions, a and b, are satisfied while the abovementioned detection is performed. a) The drain sensor is detected to be soaked in the water 10 times in a row. b) The intake temperature subtracted with liquid pipe temperature is detected to be less than-10: for a total of 30 minutes. (When the drain sensor is detected to be NOT soaked in the water, the detection record of a and b will be cleared.) ※ Abnormality by malfunction of drain pump (above (1)~(3) is detected before it becomes an outdoor unit forced stop condition. (5) When condition which the outdoor unit is stopped forcibly consists, or the drain sensor detects continuously to go under water 10 times, and also detects "[liquid pipe temperature-suction temperature] $\leqq-10 \mathrm{deg} "$ for 30minutes continuously, the indoor unit stops abnormally (however, fan operates by normal control) that indoor unit and excluding [Fan mode or OFF] in same refrigerant system. Also, the outdoor unit which is connected to that indoor unit with refrigerant system stops abnormality (compressor is inhibited to operation). In this time, <2502> is displayed. (6) Forced outdoor unit stop Detection timing operation / Stop detection always (7) Forced outdoor unit stop Condition resoltive Both of power supplies of the abnormal indoor unit and outdoor unit are reset. Even if the ON/ OFF button of remote controller is turned off, abnormality is not released. NOTE) Above-mentioned (1)~(3) and (4)~(7) are detected mutually independently.	(5) Both of above mentioned (1)~(4) and the indoor linear expansion valve full-closed failure (leakage) happens synchronistically. (Note) Address/Attribute displayed on the remote controller shows the indoor unit which is cause of trouble.	Check whether the indoor linear expansion valve leaks or not.

Display	Meaning and detecting method	Causes	Check points
2503	Drain sensor (THd, DS) abnormality When the drain sensor detects short/open while the operation.	(1) Connector (CN50) contact failure (insertion failure) (2) Thermistor wiring disconnection or half disconnection (3) Thermistor defective (4) Indoor controller board (detecting circuit) failure	(1) Check whether the indoor controller board connector (CN50) is disconnected or not. (2) Check whether the thermistor wiring is disconnected or not. (3) Check the resistance of thermistor. (4) If abnormality is not found in the method of the above-mentioned from (1) to (3), it is defective of the indoor controller board.
4100	Compressor overcurrent interruption (When compressor locked) Abnormal if overcurrent of DC bus or compressor is detected within 30 seconds after compressor starts operating. Over current level : 18.0A	(1) Stop valve is closed. (2) Decrease of power supply voltage (3) Looseness, disconnection or converse of compressor wiring connection (4) Defective compressor (5) Defective outdoor power board	(1) Open stop valve. (2) Check facility of power supply. (3) Correct the wiring $(U \cdot V \cdot W$ phase) to compressor. (4) Check compressor. (5) Replace outdoor power circuit board
4116	Fan rotational frequency abnormality (Detected only PKFY-P.VAM-E) (1) When rotational frequency of the fan is detected 180rpm or less, or 2000rpm or more (1st detection) while the indoor unit fan operation, the fan stops for 30 seconds. When the rotational frequency of the fan is detected 180rpm or less, or 2000rpm or more again after the fan restarts, the indoor unit stop abnormally (fan stops). In this time, $<4116>$ is displayed.	(1) Fan rotational frequency detecting connector (CN33) disconnection in the indoor controller board. (2) Fan output connector (FAN1) disconnection in the indoor power board. (3) Fan rotational frequency detecting connector (CN33) wiring breakage in the controller board or fan output connector (FAN1) breakage in the indoor power board (4) Filter clogging (5) Indoor fan motor trouble (6) Fan rotational frequency detecting circuit failure in the indoor controller board or fan output circuit failure in the indoor power board.	(1) Check whether the connector (CN33) in the indoor controller board is disconnected or not. (2) Check whether the connector (FAN1) in the indoor power board is disconnected or not. (3) Check whether the wiring is disconnected or not. (4) Check the filter. (5) Check the indoor fan motor. (6) When there is no problem in the abovementioned from (1) to (5); (1) In the case of abnormality after the fan operation; Replace the indoor controller board. When the fan does not recover even if the indoor controller board is replaced, replace the indoor power board. (2) In the case of abnormality without fan operation, replace the indoor power board.

Display	Meaning and detecting method	Causes	Check points
4220	Abnormality such as overvoltage or voltage shortage Abnormal if any of followings are detected during compressor operation; - Decrease of DC bus voltage to 310 V - Instantaneous decrease of DC bus voltage to 350V. - Increase of DC bus voltage to 760 V . - Decrease of input current of outdoor unit to 0.1 A only if operation frequency is more than or equal to 40 Hz or compressor current is more than or equal to 6 A .	(1) Decrease of power supply voltage (2) Disconnection of compressor wiring (3) Defective 52C (4) Defective outdoor converter circuit board (5) Disconnection or loose connection of CN5 on the outdoor power circuit board. (6) Defective 52C drive circuit of outdoor power circuit board. (7) Disconnection or loose connection of CN2 on the outdoor power circuit board.	(1) Check the facility of power supply. (2) Correct the wiring $(\mathrm{U} \cdot \mathrm{V} \cdot \mathrm{W}$ phase) to compressor. (Outdoor power circuit board). (3) Replace 52C. (4) Replace outdoor converter circuit board. (5) Check CN5 wiring on the outdoor power circuit board. (6) Replace outdoor power circuit board. (7) Check CN2 wiring on the outdoor power circuit board.
4230	Abnormal temperature of heat sink Abnormal if heat sink thermistor(TH8) detects temperature indicated below $95^{\circ} \mathrm{C}$ NOTE) TH8 is internal thermistor of power module on power board.	(1) The outdoor fan motor is locked. (2) Failure of outdoor fan motor (3) Air flow path is clogged. (4) Rise of ambient temperature (5) Defective thermistor (6) Defective input circuit of outdoor power circuit board (7) Failure of outdoor fan drive circuit	(1)(2) Check outdoor fan. (3) Check air flow path for cooling. (4) Check if there is something which causes temperature rise around outdoor unit. (Upper limit of ambient temperature is $46^{\circ} \mathrm{C}$.) Turn off power, and on again to check if 4230 is displayed within 30 minutes. (5) Check thermistor <TH8> temperature by micro computer. (6) Replace outdoor power circuit board. (7) Replace outdoor controller circuit board.
4250	(1) Abnormality of power module Check abnormality by driving power module in case overcurrent is detected.	(1) Outdoor stop valve is closed. (2) Decrease of power supply voltage (3) Looseness, disconnection or converse of compressor wiring connection (4) Defective compressor (5) Defective outdoor power circuit board	(1) Open stop valve. (2) Check facility of power supply. (3) Correct the wiring $(\mathrm{U} \cdot \mathrm{V} \cdot \mathrm{W}$ phase) to compressor. (Outdoor power circuit board). (4) Check compressor. (5) Replace outdoor power circuit board.
	(2) Compressor overcurrent interruption Abnormal if overcurrent DC dc bus or compressor is detected after compressor starts operating for 30 seconds. Over current level : 18.0A	(1) Stop valve of outdoor unit is closed. (2) Decrease of power supply voltage (3) Looseness, disconnection or converse of compressor wiring connection (4) Defective fan of indoor/outdoor units (5) Short cycle of indoor/outdoor units (6) Defective input circuit of outdoor controller board (7) Defective compressor	(1) Open stop valve. (2) Check facility of power supply. (3) Correct the wiring $(\mathrm{U} \cdot \mathrm{V} \cdot \mathrm{W}$ phase) to compressor. (Outdoor power circuit board). (4) Check indoor/outdoor fan. (5) Solve short cycle. (6) Replace outdoor controller circuit board. (7) Check compressor. * Before the replacement of the outdoor controller circuit board, disconnect the wiring to compressor from the outdoor power circuit board and check the output voltage among phases, U, V, W, during test run (SW7-1 ON). No defect on boaro if voltage among phases (U-V, V-W and $W-U$) is same. Make sure to perform the voltage check with same performing frequency.
4400	Abnormality in the outdoor fan motor The outdoor fan motor is considered to be abnormal if the rotational frequency of fan motor is abnormal when detected during operation. Fan motor rotational frequency is abnormal if; - 100 rpm or below detected continuously for 15 seconds at 20: or more outside air temperature - 50 rpm or below or 1500 rpm or more detected continuously for 1 minute.	(1) Failure in the operation of the DC fan motor (2) Failure in the outdoor circuit controller board	(1) Check or replace the DC fan motor. (2) Check the voltage of the outdoor circuit controller board during operation. (3) Replace the outdoor circuit controller board. (when the failure is still indicated even after performing the remedy 1 above.)

Display	Meaning and detecting method	Causes	Check points
5102	Liquid pipe temperature thermistor (TH22) abnormality When the thermistor detects short/open during the operation, the operation stops and the operation changes to protect mode of restarting in 3minutes. If the thermistor does not recover in 3minutes, the operation stops abnormally. In this time, $<5102>$ is displayed. Then, if the thermistor recover in 3minutes, it operates normally. Short: Detected $90^{\circ} \mathrm{C}$ or more Open: Detected $-40^{\circ} \mathrm{C}$ or less	1) Connector (CN21) contact failure 2) Thermistor wiring disconnection or half disconnection 3) Thermistor failure 4) Detecting circuit failure in the indoor controller board	(1) Check whether the connector (CN21) in the indoor controller board is connected or not. (2) Check whether the thermistor wiring is disconnected or not. (3) Check the resistance of thermistor; $\begin{array}{r} 0^{\circ} \mathrm{C} \cdots \cdot 15 \mathrm{k} \Omega \\ 10^{\circ} \mathrm{C} \cdots 9.6 \mathrm{k} \Omega \\ 20^{\circ} \mathrm{C} \cdots 6.3 \mathrm{k} \Omega \\ 30^{\circ} \mathrm{C} \cdots 4.3 \mathrm{k} \Omega \\ 40^{\circ} \mathrm{C} \cdots 3.0 \mathrm{k} \Omega \end{array}$ (4) When there is no problem in above mentioned (1)(2)(3),replace the indoor controller board.
	Low pressure saturation temperature thermistor (TH6) abnormality (1) When controller detects short/open in thermistor during the operation, the outdoor unit stops once and restarts operation in 3 minutes. When the detected temperature is normal at just before of restarting, the outdoor unit restarts. (2) When controller detects short/open in thermistor at just before of restarting, the unit stops abnormally. In this time, <5102> is displayed. (3) For 10 minutes after starting compressor, heating mode, above-mentioned short/open are not detected. Short: $90^{\circ} \mathrm{C}$ or more Open: $-40^{\circ} \mathrm{C}$ or less	1) Connector (TH6) contact failure 2) Thermistor wiring disconnection or half disconnection 3) Thermistor failure 4) Multi controller board input circuit failure	(1) Check whether the connector (TH6) in the multi controller board is connected or not. (2) Check whether the thermistor wiring is disconnected or not. (3) Check the resistance of thermistor; $\begin{array}{r} 0^{\circ} \mathrm{C} \cdots \cdot 15 \mathrm{k} \Omega \\ 10^{\circ} \mathrm{C} \cdots 9.6 \mathrm{k} \Omega \\ 20^{\circ} \mathrm{C} \cdots 6.3 \mathrm{k} \Omega \\ 30^{\circ} \mathrm{C} \cdots 4.3 \mathrm{k} \Omega \\ 40^{\circ} \mathrm{C} \cdots 3.0 \mathrm{k} \Omega \end{array}$ (4) Set the SW1 to \square 12345678 When the temperature in multi controller board is not an actual temperature, replace the multi controller board. -42.5: Open 91.9: Short

Display	Meaning and detecting method	Causes	Check points
5103	Gas pipe temperature thermistor (TH23) abnormality When the thermistor detects short/open after 3minutes-continuous thermo ON during cooling or dry operation, the operation stops and the operation changes to protect mode of restarting in 3 minutes. If the thermistor does not recover in 3minutes, the the operation stops abnormally. In this time, <5103> is displayed. Then, if the thermistor recover in 3minutes, it operates normally. Short: Detected $90^{\circ} \mathrm{C}$ or more Open: Detected $-40^{\circ} \mathrm{C}$ or less	1) Connector (CN29) contact failure 2) Thermistor wiring disconnection or half disconnection 3) Thermistor failure 4) Detecting circuit failure in the indoor controller board	(1) Check whether the connector (CN29) in the indoor controller board is connected or not. (2) Check whether the thermistor wiring is disconnected or not. (3) Check the resistance of thermistor; $\begin{array}{r} 0^{\circ} \mathrm{C} \cdots 15 \mathrm{k} \Omega \\ 10^{\circ} \mathrm{C} \cdots 9.6 \mathrm{k} \Omega \\ 20^{\circ} \mathrm{C} \cdots 6.3 \mathrm{k} \Omega \\ 30^{\circ} \mathrm{C} \cdots 4.3 \mathrm{k} \Omega \\ 40^{\circ} \mathrm{C} \cdots 3.0 \mathrm{k} \Omega \end{array}$ (4) When there is no problem in above mentioned (1)(2)(3),replace the indoor controller board.
5105	Pipe temperature / judging defrost thermistor (TH3) abnormality When controller detects short/open in thermistor during the operation, the outdoor unit stops once and restarts operation in 3 minutes. When the detected temperature is normal at just before of restarting, the outdoor unit restarts. When controller detects short/open in thermistor at just before of restarting, the unit stops abnormally. In this time, <5105> is displayed. For 10 minutes after starting compressor, for defrosting or for 3minutes after recover of defrosting, above-mentioned short/open are not detected. Short: $88^{\circ} \mathrm{C}$ or more $(0.4 \mathrm{k} \Omega)$ Open: - $39^{\circ} \mathrm{C}$ or less ($115 \mathrm{k} \Omega$)	1) Connector (TH3) contact failure 2) Thermistor wiring disconnection or half disconnection 3) Thermistor failure 4) Multi controller board input circuit failure	(1) Check whether the connector (TH3) in the multi controller board is connected or not. (2) Check whether the thermistor wiring is disconnected or not. (3) Check the resistance of thermistor; When the resistance is not below value, replace the thermistor. $\begin{array}{r} 0^{\circ} \mathrm{C} \cdots 15 \mathrm{k} \Omega \\ 10^{\circ} \mathrm{C} \cdots 9.6 \mathrm{k} \Omega \\ 20^{\circ} \mathrm{C} \cdots 6.3 \mathrm{k} \Omega \\ 30^{\circ} \mathrm{C} \cdots 4.3 \mathrm{k} \Omega \\ 40^{\circ} \mathrm{C} \cdots 3.0 \mathrm{k} \Omega \end{array}$ (4) Set the SW1 to \square $\begin{array}{r} 12345678 \\ \square \quad \square \end{array}$ When the temperature in multi controller board is not an actual temperature, replace the multi controller board. -42.5: Open 91.9: Short

Display	Meaning and detecting method	Causes	Check points
5106	Outdoor temperature thermistor (TH7) abnormality (1) When controller detects short/open in thermistor during the operation, the outdoor unit stops once and restarts operation in 3 minutes. When the detected temperature is normal at just before of restarting, the outdoor unit restarts. (2) When controller detects short/open in thermistor at just before of restarting, the unit stops abnormally. In this time, <5106> is displayed. (3) For 10 minutes after starting compressor, for defrosting or for 3minutes after recover of defrosting, above-mentioned short/open are not detected. Short: $90^{\circ} \mathrm{C}$ or more Open: $-40^{\circ} \mathrm{C}$ or less	1) Connector (TH7) contact failure 2) Thermistor wiring disconnection or half disconnection 3) Thermistor failure 4) Multi controller board input circuit failure	(1) Check whether the connector (TH7) in the multi controller board is connected or not. (2) Check whether the thermistor wiring is disconnected or not. (3) Check the resistance of thermistor; When the resistance is not below value, replace the thermistor. $\begin{array}{r} 0^{\circ} \mathrm{C} \cdots \cdot 15 \mathrm{k} \Omega \\ 10^{\circ} \mathrm{C} \cdots 9.6 \mathrm{k} \Omega \\ 20^{\circ} \mathrm{C} \cdots 6.3 \mathrm{k} \Omega \\ 30^{\circ} \mathrm{C} \cdots 4.3 \mathrm{k} \Omega \\ 40^{\circ} \mathrm{C} \cdots 3.0 \mathrm{k} \Omega \end{array}$ (4) Set the SW1 to on 12345678 When the temperature in multi controller board is not an actual temperature, replace the multi controller board. -42.5: Open 91.9: Short
5110	Heat sink temperature thermistor (TH8) abnormality (internal thermistor of power module) (1) When controller detects short/open in thermistor during the operation, the outdoor unit stops once and restarts operation in 3 minutes. When the detected temperature is normal at just before of restarting, the outdoor unit restarts. (2) When controller detects short/open in thermistor at just before of restarting, the unit stops abnormally. In this time, <5110> is displayed. (3) For 10 minutes after starting compressor, for defrosting or for 3minutes after recover of defrosting, above-mentioned short/open are not detected. Short: $170^{\circ} \mathrm{C}$ or more Open: $-35^{\circ} \mathrm{C}$ or less	1) Connector (TH8) contact failure. 2) Thermistor wiring disconnection or half disconnection. 3) Thermistor failure 4) Power board input circuit failure	(1) Check whether the connector (TH8) in the power circuit board. (2) Check whether the thermistor wiring is disconnected or not. (3) Check the resistance of thermistor; When the resistance is not below value, replace the thermistor. $\begin{array}{r} 0^{\circ} \mathrm{C} \cdots \cdot \cdot 180 \mathrm{k} \Omega \\ 10^{\circ} \mathrm{C} \cdots \cdot \cdot 105 \mathrm{k} \Omega \\ 20^{\circ} \mathrm{C} \cdots \cdots \cdot 63 \mathrm{k} \Omega \\ 30^{\circ} \mathrm{C} \\ \hline \cdots \cdots \cdot 39 \mathrm{k} \Omega \\ 40^{\circ} \mathrm{C} \cdots \cdots \cdot 25 \mathrm{k} \Omega \end{array}$ (4) Set the SW1 to on 12345678 When the temperature in multi controller board is not an actual temperature, replace the power board. -81.0: Open 999.9: Short

Display	Meaning and detecting method	Causes	Check points
5201	Pressure sensor (63HS) abnormality (1) When detected pressure in high-pressure pressure sensor is 1 MPa or less during the operation, the compressor stops and restarts operation in 3 minutes. (2) When the detected pressure is 1 MPa or less at just before of restarting, the compressor stops abnormally. In this time, $<5201>$ is displayed. (3) For 3 minutes after starting compressor, for defrosting or for 3 minutes after recover of defrosting, abnormality is not determined as abnormality.	1) High-pressure sensor failure 2) Internal pressure decrease by gas leakage 3) Connector contact failure, disconnection 4) Multi controller board input circuit failure	(1) Check the high-pressure sensor. (2) Check the internal pressure. (3) Check the high-pressure sensor. (4) Check the high-pressure sensor.
5300	Current sensor error Abnormal if current sensor detects -1.5 A to 1.5A during compressor operation. (This error is ignored in case of SW7-1 ON.)	1) Disconnection of compressor wiring 2) Defective circuit of current sensor on outdoor power circuit board	(1) Correct the wiring $(U \cdot V \cdot W$ phase) to compressor. (Outdoor power circuit board). (2) Replace outdoor power circuit board.
6600	Duplex address error Detected error when transmission of unit with the same address is confirmed, Note) Address/Attribute displayed on the remote controller shows the controller detecting abnormality.	1) There are 2 units or more with the same address among the outdoor unit or indoor unit or lossnay controller, remote controller. 2) When noise has occurred in the transmission signal, and the signal has changed.	(1) Look for the unit, which is source of abnormality with the same address. When the same address is found, correct the address and turn off power supply of outdoor unit, indoor unit, and lossnay for 2 minutes or more as the same time. Then, turn on power supply. (2) Check the transmitted wave and the noise on the transmission line.
6602	Transmission processor H/W error " 1 " shows on the transmission line though the transmission processor transmitted " 0 ". Note) Address/Attribute displayed on the remote controller shows the controller detecting abnormality.	1) When the wiring for either of the indoor unit, the outdoor unit or lossnay transmission line is constructed or polarity is changed with the power supply turned on, the transmission waves change in case that the transmission data collides mutually. It causes to detect error. 2) Transmission processor circuit failure 3) When the transmission data has changed by the noise.	(1) When the transmission line is constructed with the current flowed, turn off power supply of outdoor unit, indoor unit and lossnay for 2 minutes or more as the same time. Then, turn on power supply. (2) Check the transmitted wave and the noise on the transmission line.

Display	Meaning and detecting method	Causes	Check points
6603	Transmission bus busy error (1) Over error by collision Abnormality when the state, which cannot be transmitted by collision of transmission, is consecutive for 8 to 10 minutes. (2) The state that data cannot to be output to the transmission line by the noise happens for 8 to 10 minutes consecutively. Note) Address/Attribute displayed on the remote controller shows the controller detecting abnormality.	1) The transmission processor cannot be transmitted since a short cycle voltage of the noise etc. mixes on the transmission line consecutively. 2) The transmission volume increases and cannot be transmitted since the wiring method is mistaken and the routing technique to the terminal board (TB3) for the transmission line of the outdoor unit and the terminal board (TB7) for centralized control cannot be transmitted. 3) The share becomes high since the data exists together to other transmitted data by a defective repeater (function which connects and intercepts the transmission of controlling system and centralized control system), and it causes abnormal detection.	(1) Check whether the transmission line of the indoor unit, fresh master, lossnay and remote controller is connected to the outdoor unit terminal board (TB7) for centralized controller or not. (2) Check whether the transmission line with the other refrigerant system of the indoor unit and lossnay is connected to the outdoor unit terminal board (TB3) for transmission or not. (3) Check whether the outdoor unit terminal board for transmission line (TB3) and for centralized controller (TB7) are connected or not. (4) Check the transmitted wave and the noise on the transmission line.
6606	Signal communication error with transmission processor Signal communication error between unit processor and transmission processor Note) Address/Attribute displayed on the remote controller shows the controller detecting abnormality.	1) It happened since the noise and lightening serge that happened by chance had not normally transmitted the data of the unit/transmission processor. 2) The address transmission from the unit processor was not normally transmitted by the hardware of transmission processor defective.	Turn off power supply of outdoor unit, indoor unit, and lossnay for $2 m$ inutes or more at the same time. Then, turn on power supply. It recovers normally at the malfunction that happens by chance. When same abnormality occurs again, it is defective of a generation former controller.

From the preceding page.

Display	Meaning and detecting method	Causes	Check points
6607	No ACK (Acknowledgement) (1) Abnormality which controller of the sending side detects when there is no answer (ACK) from other side though data was transmitted once. It is detected 6 times every 30seconds continuously.	Factor that not related to origin 1) Since the address switch was changed with the current passed, the unit in the last address does not exist.	(1) Turn off power supply of outdoor unit, indoor unit fresh master and lossnay for 2 minutes or more at the same time. Then, turn on power supply. It recovers normally at the malfunction that happens by chance.
		2) Decline of transmission voltage and signal by transmission line tolerance over - The furthest point $\cdots 200 \mathrm{~m}$ - Remote controller line $\cdots(12 \mathrm{~m})$ (Refer to 8-3.)	(2) Check the address switch in the address, which occurs abnormality.
	which did not send back replay (ACK).	3) Decline of transmission line voltage and signal by unmatched kind of line. - Shield line-CVVS, CPEVS Line diameter $\cdots 1.25 \mathrm{~mm}^{2}$ or more	(3) Check whether the transmission line is connected / loosen or not at origin. (Terminal board or connector)
		4) Decline of transmission line voltage and signal by a number of overconnected units.	(4) Check whether the transmission line tolerance is over or not.
		5) Miss operation of origin controller, which happens by chance.	(5) Check whether the kind of transmission line is mistaken or not.
		6) Origin controller defective	When there is any trouble from above (1)-(5), turn off power supply of outdoor unit, indoor unit and lossnay for 2 minutes or more at the same time. Then, turn on power supply.
			When there is not any trouble in single refrigerant system (1outdoor unit) from above(1-(5), controller defective in displayed address and attribute. When there is not any trouble in different refrigerant system (2outdoor unit or more) from above(1-(5), determine it after (6).
			(6) When the address, which should not exist, is an origin, since there is the indoor unit which memorizes the address data, cancel the unnecessary
	1) When the cause of displayed address and attribute is on the outdoor unit side	1) Contact failure of outdoor unit or indoor unit transmission line	address data by the manual setting function of remote controller.
	(The indoor unit detects when there is no reply (ACK) on transmitting from the	2) Indoor unit transmission connector (CN2M) disconnection	However, they are limited to the system, which sets the group between
	indoor unit to the outdoor unit.)	3) Sending/receiving signal circuit failure in the indoor/outdoor unit	different refrigerant systems, or which fresh master /lossnay are connected. When there is not any trouble from
	2) When the cause of displayed address	1) When operating with multi refrigerant system indoor units, the	above (1)-®), replace the displayed address/attribute controller board.
	and	remote controller transmits the signal to the indoor unit after the other refrigerant system outdoor unit is turned off or turned on again in 2minutes, and detects abnormality.	In this time, when the error does not recover to normal, the outdoor unit multi controller board (repeater circuit) defective is expected.
		2) Contact failure of remote controller or indoor unit transmission line.	Check the recovery by replacing the multi controller board one by one.
	(The remote controller detects when there is no reply (ACK) on transmitting	3) Indoor unit transmission connector (CN2M) disconnection.	
	from the remote controller to the indoor unit.)	4) Sending/receiving signal circuit failure in the indoor unit or remote controller.	

Display	Meaning and detecting method	Causes	Check points
6607	3) When the cause of displayed address and attribute is on the remote controller side (The indoor unit detects when there is no reply (ACK) on transmitting from the indoor unit to the remote controller unit.)	1) When operating with multi refrigerant system indoor units, the indoor units transmits the signal to the remote controller after the other refrigerant system outdoor unit is turned off or turned on again in 2minutes, and detects abnormality. 2) Contact failure of remote controller or indoor unit transmission line 3) Indoor unit transmission connector (CN2M) disconnection. 4) Sending/receiving signal circuit failure in the indoor unit or remote controller.	
	4) When the cause of displayed address and attribute is on the fresh master side (The indoor unit detects when there is no reply (ACK) on transmitting from the indoor unit to the fresh master.)	1) When synchronized operating with other refrigerant system fresh master, the indoor units transmits the signal to the fresh master after the fresh master and same refrigerant system outdoor unit is turned off or turned on again in 2 minutes, and detects abnormality.	
		2) Contact failure of fresh master or indoor unit transmission line	
		3) Indoor unit or fresh master transmission connector (CN2M) disconnection. 4) Sending/receiving signal circuit failure in the indoor unit or fresh master.	
	5) When the cause of displayed address and attribute is on the lossnay side (The indoor unit detects when there is no reply (ACK) on transmitting from the indoor unit to the lossnay.)	1) When the lossnay power supply is Off, the indoor unit detects abnormality at signal transmitting to the lossnay.	

From the previous page.

Display	Meaning and detecting method	Causes	Check points
6607	6) When the controller of displayed address and attribute is not recognized	2) When synchronized operating with other refrigerant system lossnay, the indoor units transmits the signal to the lossnay after the lossnay and same refrigerant system outdoor unit is turned off or turned on again in 2minutes, and detects abnormality 3) Contact failure of lossnay or indoor unit transmission line 4) Indoor unit transmission connector (CN2M) disconnection. 5) Sending/receiving signal circuit failure in the indoor unit or lossnay. 1) Since the address switch was changed with the current passed, the unit in the last address does not exist. 2) Since the fresh master/lossnay address are changed after synchronized setting of fresh master / lossnay by the remote controller, abnormality is detected at transmitting from the indoor unit.	
6608	No response Though there was a replay (ACK) of having received signal from the other side, it is the abnormality when the response command does not return. The sending side detects the abnormality continuously six times every 30 seconds. Note) Address/Attribute displayed on the remote controller shows the controller, which did not response.	1) Transmission repeats the failure by the noise etc. 2) Decline of transmission voltage and signal by transmission line tolerance over. - The furthest point $\cdots 200 \mathrm{~m}$ - Remote controller line \cdots (12m) (Refer to 8-3.) 3) Decline of transmission line voltage and signal by unmatched kind of line. - Shield wire-CVVS,CPEVS wire diameter $\cdots 1.25 \mathrm{~mm}^{2}$ or more 4) Miss operation of origin controller, which happens by chance.	(1) Check the transmission wave and noise on the transmission line. (2) Turn off power supply of outdoor unit, indoor unit and lossnay for 2minutes or more at the same time. Then, turn on power supply again. It recovers normally at the malfunction that happens by chance. When same abnormality occurs again, it is defective of displayed address and attribute.

Display	Meaning and detecting method	Causes	Check points
$\begin{aligned} & 6831 \\ & 6834 \end{aligned}$	Signal reception abnormality (Remote controller) Following symptoms are regarded as abnormality. 1) When the remote controller cannot receive the signal from indoor controller normally even once for 3 minutes 2) When the remote controller cannot receive the signal even once for 2 minutes	(1) Defect of the transmission and reception circuit of the remote controller. (2) Defect of the transmission and reception circuit of the indoor controller board (3) Noise occurs on the transmission line of the remote controller (4) All remote controllers are set as sub-remote controller.	(1)~(3) Perform a check of the remote controller. According to the results, perform the following disposals. - When "RC OK" is displayed The remote controller is normal. Turn off the power supply and turn it on again. If "HO" is displayed for 4 minutes or more, replace the indoor controller board. - When "RC NG" is displayed Replace the remote controller. - When "RC 6832 or 6833 " or "ERC $00-66$ " is displayed These displays may be due to noise, etc. (4) Set one remote controller to main remote controller and the other to sub-remote controller.
$\begin{aligned} & 6832 \\ & 6833 \end{aligned}$	Signal transmission abnormality (Remote controller) Following symptoms are regarded as abnormality. 1) When sub-remote controller cannot transmit the signal to the transmission path for 6 minutes 2) When the remote controller cannot finish transmitting the signal for 30 times on end	(1) Defect of the transmission and reception circuit of the remote controller (2) Noise occurs on the transmission line of the remote controller (3) There are two main remote controllers.	
7100	When connected total models of the indoor units exceed the specified level (130\% of the outdoor unit models), error code $<7100>$ is displayed.	1) Connecting total models of the indoor unit exceed the specified level. -PUMY-P100 (~ code 26) - PUMY-P125 (~ code 33) - PUMY-P140 (~ code 38)	(1) Check the total models of connected indoor unit. (2) Check the model code registration switch (indoor controller board SW2) of connected indoor unit.
		2) There is a mistake in the registration of model name code of the outdoor unit.	Check the model code registration switch (outdoor multi controller board SW4) of the outdoor unit.

Display	Meaning and detecting method	Causes	Check points
7101	Capacity code error When the connected indoor unit models cannot be connected, $<7101>$ is displayed.	The indoor unit models is not possible to connect, The indoor unit of 20-140(code 4-28) is possible to connect.	(1) Check the model code registration switch (indoor controller board SW2) in the connected indoor unit. (2) The outdoor unit SW1 operation can check model code of the connected indoor units. Code of indoor unit No. 1 on Code of indoor unit No. 2 on Code of indoor unit No. 3 on on Code of indoor unit No. 4 on indoor unit No. 5 on Code of indoor unit No. 6 on Code of indoor unit No. 7 on
7102	Number of connecting unit over When the connecting unit exceeds a number of limitations, error code $<7102>$ is displayed. $\binom{\text { Even if the indoor unit is not connected, }}{\text { becomes }<7102>\text { is display. }}$	Connecting unit exceeds a number of limitations. It is assumed abnormality excluding the following cases; 1) The indoor unit can be totally connected up to 8 units. The indoor unit can be connected up to 8 units 2) Ventilation unit connecting is only 1 unit.	Check whether the connecting unit exceeds a number of limitations or not.
7105	Address setting error Address setting of the outdoor unit is wrong.	Addresses miss setting of the outdoor unit. The outdoor unit is not set in 000 or in the range of 51-100.	Check the address setting of the outdoor unit. The address should be set in 000 or 51-100. When the setting is out of the range, reset it, turn off power supply of the outdoor unit, indoor unit and lossnay for 2 minutes or more at the same time, and turn on power supply again.
7111	Remote controller sensor abnormality In the case of network remote controller, it is an abnormality when incapable response returns from the net work remote controller during the operation.	When an old type remote controller for M-NET is used, and the remote controller sensor is specified (SW1-1 is ON).	Replace the remote controller to net work remote controller.
0403	Serial communication error Abnormal if serial communication between outdoor multi board and outdoor power board is defective.	(1) Breaking of wire or contact failure of connector CN2 (2) Breaking of wire or contact failure of connector CN4 (3) Defective communication circuit of outdoor power board (4) Defective communication circuit of outdoor multi board for power board	(1)(2) Check connection of each connector CN2, CN4. (3) Replace outdoor power board. (4) Replace outdoor multi board.

9-2. REMOTE CONTROLLER DIAGNOSIS

- MA remote controller is equipped with the diagnosis function

If the air conditioner cannot be operated from the remote controller, diagnose the remote controller as explained below.
(1) First, check that the power-on indicator is lit.

If the correct voltage (DC12 V) is not supplied to the remote controller, the indicator will not light.
If this occurs, check the remote controller's wiring and the indoor unit.

(2) Switch to the remote controller self-diagnosis mode
\oplus Press the CHECK button for five seconds or more. The display content will change as shown below.

(3) Remote controller self-diagnosis result
[When the remote controller is functioning correctly]

Check for other possible causes, as there is no problem with the remote controller.
[Where the remote controller is not defective, but cannot be operated.]
(Error display 2) [E3], [6833] or [6832] flashes. \rightarrow Transmission is not possible.

There might be noise or interference on the transmission path, or the indoor unit or other remote controllers are defective. Check the transmission path and other , controllers.
 ,
(A) Press the (FILTER) button to start self-diagnosis

When the remote controller malfunctions]
(Error display 1) "NG" flashes. \rightarrow The remote controller's transmitting-receiving circuit is defective.

The remote controller must be replaced with a new one.
(Error display 3) "ERC" and the number of data errors are displayed. \rightarrow Data error has occurred.

The number of data errors is the difference between the number of bits sent from the remote controller and the number actually transmitted through the transmission path. If such a problem is occurring, the transmitted data is affected by noise, etc. Check the transmission path.

> When the number of data errors is "02":
> Transmission data from remote controller
> Transmission data on transmission path
(4) To cancel remote controller diagnosis
\oplus Press the CHECK button for five seconds or more. Remote controller diagnosis will be cancelled, "PLEASE WAIT" and operation lamp will flash. After approximately 30 seconds, the state in effect before the diagnosis will be restored.

9-3. REMOTE CONTROLLER TROUBLE

(1) For M-NET remote controller systems

Symptom or inspection code	Cause	Inspection method and solution
Though the content of operation is displayed on the remote controller, some indoor units do not operate.	- The power supply of the indoor unit is not on. - The address of the indoor units in same group or the remote controller is not set correctly. - The group setting between outdoor units is not registered to the remote controller. - The fuse on the indoor unit controller board is blown.	- Check the part where the abnormality occurs. (1) The entire system (2) In the entire refrigerant system (3) In same group only (4) One indoor unit only <In case of the entire system or in the entire refrigerant system> - Check the self-diagnosis LED of the outdoor unit. - Check the items shown in the left that are related to the outdoor unit. <In case of in same group only or one indoor unit only> - Check the items shown in the left that are related to the indoor unit.
Though the indoor unit operates, the display of the remote controller goes out soon.	- The power supply of the indoor unit is not on. - The fuse on the indoor unit controller board is blown.	
is not displayed on the remote controller. (M-NET remote controller is not fed.)	- The power supply of the outdoor unit is not on. - The connector of transmission outdoor power board is not connected. - The number of connected indoor unit in the refrigeration system is over the limit or the number of connected remote controller is over the limit. - M-NET remote controller is connected to MA remote controller cable. - The transmission line of the indoor/outdoor unit is shorted or down. - M-NET remote controller cable is shorted or down. - Transmission outdoor power board failure.	
"HO" keeps being displayed or it is displayed periodically. (" HO " is usually displayed about 3 minutes after the power supply of the outdoor unit is on.)	- The power supply for the feeding expansion unit for the transmission line is not on. - The address of the outdoor unit remains " 00 ". - The address of the indoor unit or the remote controller is not set correctly. - MA remote controller is connected to the transmission line of the indoor/outdoor unit.	
The remote controller does not operate though (©) is displayed.	- The transmission line of the indoor/outdoor unit is connected to TB15. - The transmission line of the indoor/outdoor unit is shorted, down or badly contacted.	

(2) For MA remote controller systems

Symptom or inspection code	Cause	Inspection method and solution
Though the content of operation is displayed on the remote controller, some indoor units do not operate.	- The power supply of the indoor unit is not on. - Wiring between indoor units in same group is not finished. - The indoor unit and Slim model are connected to same group. - The fuse on the indoor unit controller board is blown.	- Check the part where the abnormality occurs. (1) The entire system (2) In the entire refrigerant system (3) In same group only (4) One indoor unit only <In case of the entire system or in the entire refrigerant system> - Check the self-diagnosis LED of the outdoor unit. - Check the items shown in the left that are related to the outdoor unit. <In case of in same group only or one indoor unit only> - Check the items shown in the left that are related to the indoor unit.
Though the indoor unit operates, the display of the remote controller goes out soon.	- The power supply of the indoor unit (Master) is not on. - In case of connecting the system controller, the setting of the system controller does not correspond to that of MA remote controller. - The fuse on the indoor unit (Master) controller board is blown.	
(\bigcirc) is not displayed on the remote controller. (MA remote controller is not fed.)	The remote controller is not fed until the power supply of both indoor unit and outdoor unit is on and the start-up of both units is finished normally. - The power supply of the indoor unit is not on. - The power supply of the outdoor unit is not on. - The number of connected remote controller is over the limit (Maximum: 2 units) or the number of connected indoor unit that is over the limit (Maximum: 16 units). - The address of the indoor unit is " 00 " and the address for the outdoor unit is the one other than " 00 ". - The transmission line of the indoor/outdoor unit is connected to TB15. - MA remote controller is connected to the transmission line of the indoor/outdoor unit. - The remote controller cable is shorted or down. - The power supply cable or the transmission line is shorted or down. - The fuse on the indoor unit controller board is blown.	
"PLEASE WAIT" keeps being displayed or it is displayed periodically. ("PLEASE WAIT" is usually displayed about 3 minutes after the power supply of the outdoor unit is on.)	- The power supply of the outdoor unit is not on. - The power supply of the feeding expansion unit for the transmission line is not on. - The setting of MA remote controller is not main remote controller, but sub-remote controller. - MA remote controller is connected to the transmission line of the indoor/outdoor unit.	
The remote controller does not operate though (©) is displayed.	- The power supply of the indoor unit (Master) is not on. - The transmission line of the indoor/outdoor unit is connected to TB15. - The transmission line of the indoor/outdoor unit is shorted, down or badly contacted. -The fuse on the indoor unit controller board is blown.	

9-4. THE FOLLOWING SYMPTOM DO NOT REPRESENT TROUBLE (EMERGENCY)

Symptom	Display of remote controller	CAUSE
Even the cooling (heating) operation selection button is pressed, the indoor unit cannot be operated.	"Cooling (Heating)" blinks	The indoor unit can not cool (heat) if other indoor units are heating (cooling).
The auto vane runs freely.	Normal display	Because of the control operation of auto vane, it may change over to horizontal blow automatically from the downward blow in cooling in cause the downward blow operation has been continued for one hour. At defrosting in heating, hot adjusting and thermostat OFF, it automatically changes over to horizontal blow.
Fan setting changes during heating.	Normal display	Ultra-low speed operation is commenced at thermostat OFF. Light air automatically change over to set value by time or piping temperature at thermostat ON.
Fan stops during heating operation.	"Defrost ${ }^{\text {¢ }}$	The fan is to stop during defrosting.
Fan does not stop while operation has been stopped.	Light out	Fan is to run for one minute after stopping to exhaust residual heat (only in heating).
No setting of fan while start SW has been turned on.	STAND BY \downarrow	Ultra-low speed operation for 5 minutes after SW ON or until piping temperature becomes $35^{\circ} \mathrm{C}$. There low speed operate for 2 minutes, and then set notch is commenced. (Hot adjust control)
Indoor unit remote controller shows "HO" or "PLEASE WAIT " indicator for about two minutes when turning ON power supply.	"HO" blinks "PLEASE WAIT" blinks	System is being driven. Operate remote controller again after "HO" or "PLEASE WAIT" disappears.
Drain pump does not stop while unit has been stopped.	Light out	After a stop of cooling operation, unit continues to operate drain pump for three minutes and then stops it.
Drain pump continues to operate while unit has been stopped.	-	Unit continues to operate drain pump if drainage is generated, even during a stop.

9-5. INTERNAL SWITCH FUNCTION TABLE

PUMY-P100YHM PUMY-P125YHM PUMY-P140YHM PUMY-P100YHM PUMY-P125YHM ${ }_{1}$ PUMY-P140YHM ${ }_{1}$

	Switch	Step	Function	Operation in Each Switch Setting			Remarks
				ON	OFF	When to Set	
$\begin{aligned} & \bar{亏} \\ & \bar{亏} \\ & \text { oे } \\ & \text { 믈 } \end{aligned}$	SW U1 1st digit SW U2 2nd digit					Before turning the power on	<Factory Settings>
	SW1 Digital Display Switching	1~8				Can be set either during operation or not.	<Factory Settings>
	SW2 function Switching	1	Selects operating system startup	Doesn't start up	Start up Do not clear	Before turning the power on	<Factory Settings>
		2	Connection Information Clear Switch	Clear			
		3	Abnormal data clear switch input	Clear abnormal data	Normal	OFF to ON any time after the power is turned on.	
		4	Pump down	Run adjustment mode.	Normal	During compressor running	
		5	Auto change over from Remote controller	Enable	Disable	Before turning the power on	
		6	-	-	-	-	
	SW3 Trial operation	1	ON/ OFF from outdoor unit	ON	OFF	Any time after the power is turned on.	<Factory Settings>
		2	Mode setting	Heating	Cooling		
	SW4 Model Switching	1~6	※1 MODEL SELECT $1:$ ON $0:$ OFFMODELS SW4 1 2 3 4 5 6 PUMY-P100YHHM 1 1 0 0 1 0 PUMY-P125YHM 1 1 0 0 0 1 PUMY-P140YHMM 1 1 0 0 1 1			Before the power is turned on.	<Factory Settings> Set for each capacity.
	SW5 function switching	1	Pressure limitation value change	Enable	Normal	Can be set when off or during operation	<Factory Settings>
		2	Change the indoor unit's LEV opening at start	Enable	Normal		
		3	Fixing the indoor units linear expansion valve opening	Fix	Normal		
		4	Fix the operation frequency	Fix	Normal	OFF to ON during compressor running.	
		5	Change the indoor unit's LEV opening at defrost	Enable	Normal	Can be set when off or during operation	
		6	Switching the target sub cool. During the FAN or COOL mode,and thermo-OFF or OFF in heating operation, set the opening of linear expansion valve on indoor unit *1	Enable	Normal		
		7		Active	Inactive		
		8	During the FAN or COOL mode, and thermo-OFF in heating operation, set the opening of linear expansion valve on indoor unit *2	Active	Inactive		

※1 SW5-7 Refrigerant amount shortage measure during heating operation
(Refrigerant piping is long etc.)
※2 SW5-8 Room temperature rise measures of the indoor unit that has stopped in heating mode.

	Switch	Step	Function	Operation in Each Switch Setting			Remarks
				ON	OFF	When to Set	
	SW6 function switching	1	-	-	-	-	<Factory Settings>
		2	Switch of current limitation reading in a different way	Enable	Normal	Before turning the power on.	
		3	-	-	-	-	
		4	Restriction of maximum frequency	Enable	Normal	Can be set when off or during operation	
		5	Ignore refrigerant filling abnormality	Enable	Normal		
		6	Switching the target discharge pressure (Pdm)	Enable	Normal		
		7	Switching (1) the target evaporation temperature (ETm)	Enable	Normal		
		8	Switching (2) the target evaporation temperature (ETm)	Enable	Normal		
		1	Ignore current sensor abnormality	Enable	Normal	Before turning the power on.	<Factory Settings>
		2	-	-	-		
		3	-	-	-		ON
	function switching	4	-	-	-		123456
		5	-	-	-		
		6	Forced defrost	Forced defrost		During compressor running in heating mode.	
	SW8 function	1	Silent mode/ Demand Control Selection (see next page)	Demand Control	Silent mode	Can be set when off or during	<Factory Settings> ON
	switching	2	Change of defrosting control	Enable (For high humidity)	Normal	operation	OFF 12

9-6. OUTDOOR UNIT INPUT/OUTPUT CONNECTOR

- State (CN51)

Compressor operation lamp
X, Y: Relay (Coil standard of 0.9W or less for DC 12V)
Auto change over (CN3N)

	ON	OFF
SW1	Heating	Cooling
SW2	Validity of SW1	Invalidity of SW1

- Silent Mode / Demand Control (CN3D)

The silent mode and the demand control are selected by switching the Dip switch 8-1 on outdoor controller board.
It is possible to set it to the following power sonsumption (compared with ratings) by setting SW1,2

	Outdoor controller board DIP SW8-1	SW1	SW2	Function
Silent mode	OFF	ON	-	Silent mode operation
Demand control	ON	OFF	OFF	100% (Normal)
		ON	OFF	75%
		ON	ON	50%
		OFF	ON	0% (Stop)

9-7. HOW TO CHECK THE PARTS

PUMY-P100YHM PUMY-P100YHM 1
PUMY-P125YHM PUMY-P125YHM 1
PUMY-P140YHM PUMY-P140YHM 1

Parts name	Check points			
Thermistor (TH3) <Outdoor pipe>	Disconnect the connector then measure the resistance using a tester. (Surrounding temperature $10^{\circ} \mathrm{C} \sim 30^{\circ} \mathrm{C}$)			
Thermistor (TH4) <Discharge>		Normal	Abnormal	*1 TH8 is internal thermistor of power module.
Thermistor (TH6) <Low pressure saturated temperature>	TH4	160k $2 \sim 410 \mathrm{k} \Omega$	Open or short	
		4.3k $\sim \sim 9.6 \mathrm{k} \Omega$		
Thermistor (TH7) <Outdoor>	TH6 TH7			
Thermistor (TH8) <Heat sink>	TH8 ※1	39k $\sim \sim 105 \mathrm{k} \Omega$		
Fan motor(MF1,MF2)	Refer to next page.			
Solenoid valve coil <Four-way valve> (21S4)	Measure the resistance between the terminals using a tester. (Surrounding temperature $20^{\circ} \mathrm{C}$)			
	Normal			Abnormal
	P100, P125,P140YHM		P100,P125,P140YHM ${ }_{1}$	Open or short
	$1370 \pm 100 \Omega$		$1435 \pm 150 \Omega$	
Motor for compressor (MC) U	Measure the resistance between the terminals using a tester. (Winding temperature $20^{\circ} \mathrm{C}$)			
3	Normal			Abnormal
w	0.302Ω			Open or short
Solenoid valve coil <Bypass valve> (SV1)	Measure the resistance between the terminals using a tester. (Surrounding temperature $20^{\circ} \mathrm{C}$)			
	Normal		normal	
	$1197 \pm 10 \Omega$		or short	

Check method of DC fan motor (fan motor / outdoor controller circuit board)

(1) Notes

- High voltage is applied to the connecter (CNF1, 2) for the fan motor. Give attention to the service.
- Do not pull out the connector (CNF1, 2) for the motor with the power supply on.
(It causes trouble of the outdoor controller circuit board and fan motor.)
(2) Self check

Symptom : The outdoor fan cannot turn around.

Power supply check

Measure the voltage in the outdoor controller circuit board.
TEST POINT (1) : Voc (between 1 (+) and 4 (-) of the fan connector): V_{Dc} DC310-340V
TEST POINT (2) : Vcc (between $5(+)$ and $4(-)$ of the fan connector): Vcc DC15V
TEST POINT (3) : Vsp (between $6(+)$ and $4(-)$ of the fan connector): $\mathrm{V}_{\text {SP }} \mathrm{DCO}$ to 6.5 V
The voltage of Vsp is a value during the fan motor operation.]
In the case that the fan motor off, the voltages is 0 V .

Fan motor position sensor signal check

Measure the voltage at the TEST POINT (4) (V_{FG}), between 7 (+) and $4(-)$
of the fan connector, while slowly turning the fan motor more than one revolution.
\downarrow

Replacement of the outdoor controller circuit board

9-8. HOW TO CHECK THE COMPONENTS

<Thermistor feature chart>
Low temperature thermistors

- Thermistor <Outdoor pipe> (TH3)
- Thermistor <Low pressure saturated temperature> (TH6)
- Thermistor <Outdoor> (TH7)

Thermistor R0 $=15 \mathrm{k} \Omega \pm 3 \%$
B constant $=3480 \pm 2 \%$

$R \mathrm{t}=15 \exp \left\{3480\left(\frac{1}{273+\mathrm{t}}-\frac{1}{273}\right)\right\}$			
$0^{\circ} \mathrm{C}$	$15 \mathrm{k} \Omega$	$30^{\circ} \mathrm{C}$	$4.3 \mathrm{k} \Omega$
$10^{\circ} \mathrm{C}$	$9.6 \mathrm{k} \Omega$	$40^{\circ} \mathrm{C}$	$3.0 \mathrm{k} \Omega$
$20^{\circ} \mathrm{C}$	$6.3 \mathrm{k} \Omega$		
$25^{\circ} \mathrm{C}$	$5.2 \mathrm{k} \Omega$		

High temperature thermistor

- Thermistor <Discharge> (TH4)

Thermistor R120 $=7.465 \mathrm{k} \Omega \pm 2 \%$
B constant $=4057 \pm 2 \%$

| $=7.465 \exp \left\{4057\left(\frac{1}{273+\mathrm{t}}\right.\right.$ | | | |
| :--- | :---: | :---: | ---: |$\left.\left.-\frac{1}{393}\right)\right\}$

<HIGH PRESSURE SENSOR>

(3)-(1) : 5 V (DC)
(2)-(1) : Vout (DC)

9-9. TEST POINT DIAGRAM

Outdoor multi controller board PUMY-P100YHM PUMY-P100YHM 1 PUMY-P125YHM PUMY-P125YHM ${ }_{1}$ PUMY-P140YHM PUMY-P140YHM 1

Outdoor power circuit board PUMY-P100YHM PUMY-P100YHM PUMY-P125YHM PUMY-P125YHM PUMY-P140YHM PUMY-P140YHM 1

Brief Check of POWER MODULE

* Usually, each point is in a state of being short-circuited if they are broken.

Measure the resistance in the following points (connectors, etc.).
If they are short-circuited, it means that they are broken.

1. Check of POWER MODULE
(1).Check of DIODE circuit

(2). Check of IGBT circuit

P2- U , P2- V , P2-W, N2- U, N2-V, N2-W
Note:The marks, L1, L2, L3, N1, N2, P1, P2, U, V and W shown in the diagram are not actually printed on the board.

Outdoor converter circuit board PUMY-P100YHM PUMY-P100YHM 1 PUMY-P125YHM PUMY-P125YHM 1 PUMY-P140YHM PUMY-P140YHM 1

Outdoor noise filter circuit board PUMY-P100YHM PUMY-P100YHM PUMY-P125YHM PUMY-P125YHM PUMY-P140YHM PUMY-P140YHM1

LI1, LI2, LI3, NI
POWER SUPPLY
LI1-LI2/LI2-LI3/LI3-LI1 : AC380/400/415V input
LI1-NI/LI2-NI/LI3-NI : AC220/230/240V input
(Connect to the terminal block (TB1))

Transmission power board PUMY-P100YHM PUMY-P125YHM PUMY-P140YHM PUMY-P100YHM 1 PUMY-P125YHM 1 PUMY-P140YHM 1

CN1
Connect to the outdoor noise filter circuit board (1)-(3) : 220-240V AC

Connect to the outdoor multi controller board
(1)-(2): 24-30V DC
(3)-(4): 24-30V DC

9-10. OUTDOOR UNIT FUNCTIONS

	SW1 setting	Display mode	Display on the LED1, 2 (display data)								Notes
	12345678		1	2	3	4	5	6	7	8	
64	00000010	Operational frequency	0~FF(16 progressive)								Display of actual operating frequency
65	10000010	Target frequency	0~255								Display of target frequency
66	01000010	Outdoor fan control step number	0~15								Display of number of outdoor fan control steps (target)
69	10100010	IC1 LEV Opening pulse	0~2000								Display of opening pulse of indoor LEV
70	01100010	IC2 LEV Opening pulse									
71	11100010	IC3 LEV Opening pulse									
72	00010010	IC4 LEV Opening pulse									
73	10010010	IC5 LEV Opening pulse									
74	01010010	High-pressure sensor (Pd) kg//m²	-99.9 ~ 999.9								Display of outdoor subcool (SC) data and detection data from high-pressure sensor and each thermistor
75	11010010	TH4(Td) ${ }^{\circ} \mathrm{C}$									
76	00110010	TH6(ET) ${ }^{\circ} \mathrm{C}$									
77	10110010	TH7(Outdoor-temp.) ${ }^{\circ} \mathrm{C}$									
78	01110010	TH3(Outdoor pipe) ${ }^{\circ} \mathrm{C}$									
80	00001010	TH8(Power module) ${ }^{\circ} \mathrm{C}$									
81	10001010	IC1 TH23(Gas) ${ }^{\circ} \mathrm{C}$	$-99.9 \text { ~ } 999.9$ (When the indoor unit is not connected,it is displayed as" 0 ".)								
82	01001010	IC2 TH23(Gas) ${ }^{\circ} \mathrm{C}$									
83	11001010	IC3 TH23(Gas) ${ }^{\circ} \mathrm{C}$									
84	00101010	IC4 TH23(Gas) ${ }^{\circ} \mathrm{C}$									
85	10101010	IC5 TH23(Gas) ${ }^{\circ} \mathrm{C}$									
86	01101010	IC1 TH22(Liquid) ${ }^{\circ} \mathrm{C}$									
87	11101010	IC2 TH22(Liquid) ${ }^{\circ} \mathrm{C}$									
88	00011010	IC3 TH22(Liquid) ${ }^{\circ} \mathrm{C}$									
89	10011010	IC4 TH22 (Liquid) ${ }^{\circ} \mathrm{C}$									
90	01011010	IC5 TH22 (Liquid) ${ }^{\circ} \mathrm{C}$									
91	11011010	IC1 TH21(Intake) ${ }^{\circ} \mathrm{C}$									
92	00111010	IC2 TH21 (Intake) ${ }^{\circ} \mathrm{C}$									
93	10111010	IC3 TH21 (Intake) ${ }^{\circ} \mathrm{C}$									
94	01111010	IC4 TH21 (Intake) ${ }^{\circ} \mathrm{C}$									
95	11111010	IC5 TH21 (Intake) ${ }^{\circ} \mathrm{C}$									
96	00000110	Outdoor SC (cooling) ${ }^{\circ} \mathrm{C}$	-99.9 ~ 999.9								

	SW1 setting	Display mode	Display on the LED1, 2 (display data)									Notes
	12345678		1	2		3	4	5	6	7	8	
136	00010001	High-pressure sensor data at time of abnormality delay kgf/cm²	-99.9 ~ 999.9									Display of data from high-pressure sensor, all thermistors, and SC/SH at time of abnormality delay
137	10010001	TH4 sensor data at time of abnormality delay ${ }^{\circ} \mathrm{C}$										
138	01010001	TH6 sensor data at time of abnormality delay ${ }^{\circ} \mathrm{C}$										
139	11010001	TH3 sensor data at time of abnormality delay ${ }^{\circ} \mathrm{C}$										
140	00110001	TH8 sensor data at time of abnormality delay ${ }^{\circ} \mathrm{C}$										
141	10110001	OC SC (cooling) at time of abnormality delay ${ }^{\circ} \mathrm{C}$										
142	01110001	IC1 SC/SH at time of abnormality delay $\quad{ }^{\circ} \mathrm{C}$										
143	11110001	IC2 SC/SH at time of abnormality delay ${ }^{\circ} \mathrm{C}$										
144	00001001	IC3 SC/SH at time of abnormality delay ${ }^{\circ} \mathrm{C}$										
145	10001001	IC4 SC/SH at time of abnormality delay $\quad{ }^{\circ} \mathrm{C}$										
146	01001001	IC5 SC/SH at time of abnormality delay $\quad{ }^{\circ} \mathrm{C}$										
147	11001001	IC1 TH21 Intake ${ }^{\circ} \mathrm{F}$										Display of detection data from ea
148	00101001	IC2 TH21 Intake ${ }^{\circ} \mathrm{F}$										door thermistor
149	10101001	IC3 TH21 Intake ${ }^{\circ} \mathrm{F}$										
150	01101001	IC4 TH21 Intake ${ }^{\circ} \mathrm{F}$										
151	11101001	IC5 TH21 Intake ${ }^{\circ} \mathrm{F}$										
152	00011001	IC6 TH21 Intake ${ }^{\circ} \mathrm{F}$										
153	10011001	IC7 TH21 Intake ${ }^{\circ} \mathrm{F}$	-99	~ 999								
154	01011001	IC8 TH21 Intake ${ }^{\circ} \mathrm{F}$		hen the ind								
155	11011001	IC1 TH23 Gas ${ }^{\circ} \mathrm{F}$										
156	00111001	IC2 TH23 Gas ${ }^{\circ} \mathrm{F}$										
157	10111001	IC3 TH23 Gas ${ }^{\circ} \mathrm{F}$										
158	01111001	IC4 TH23 Gas ${ }^{\circ} \mathrm{F}$										
159	11111001	IC5 TH23 Gas ${ }^{\circ} \mathrm{F}$										
160	00000101	IC6 TH23 Gas ${ }^{\circ} \mathrm{F}$										
161	10000101	IC7 TH23 Gas ${ }^{\circ} \mathrm{F}$										
162	01000101	IC8 TH23 Gas ${ }^{\circ} \mathrm{F}$										

This chapter provides an introduction to electrical wiring for the CITY MULTI-S series, together with notes concerning power wiring, wiring for control (transmission wires and remote controller wires), and the frequency converter.

10-1. OVERVIEW OF POWER WIRING

(1). Use a separate power supply for the outdoor unit and indoor unit.
(2). Bear in mind ambient conditions (ambient temperature, direct sunlight, rain water,etc.) when proceeding with the wiring and connections.
(3). The wire size is the minimum value for metal conduit wiring. The power cord size should be 1 rank thicker consideration of voltage drops. Make sure the power-supply voltage does not drop more than 10%.
(4). Specific wiring requirements should adhere to the wiring regulations of the region.
(5). Power supply cords of parts of appliances for outdoor use shall not be lighter than polychloroprene sheathed flexible cord (design 245 IEC57). For example, use wiring such as YZW.
(6). Install an earth longer than other cables.

\triangle Warning:

Be sure to use specified wires to connect so that no external force is imparted to terminal connections. If connections are not fixed firmly, it may cause heating or fire.
Be sure to use the appropriate type of overcurrent protection switch. Note that generated overcurrent may include some amount of direct current.
4. Caution:

Some installation site may require attachment of an earth leakage breaker. If no earth leakage breaker is installed, it may cause an electric shock.
Do not use anything other than breaker and fuse with correct capacity. Using fuse and wire or copper wire with too large capacity may cause a malfunction of unit or fire.

10-2. WIRE DIAMETER AND MAIN POWER SWITCH CAPACITY

10-2-1. Wiring diagram for main power supply

10-2-2. Power supply wire diameter and capacity

Model		Power Supply	Minimum Wire Thickness (mm^{2})			Breaker for Wiring*1	Breaker for Current Leakage	
		Main Cable	Branch	Ground				
Outdoor Unit	P100-140		3N~ AC380/400/415V, 50Hz	1.5	-	1.5	16 A	16 A 30 mA 0.1 sec . or less
Indoor Unit		~/N AC220/230/240V, 50Hz	1.5	1.5	1.5	15 A	15 A 30 mA 0.1 sec . or less	

*1. A breaker with at least 3.5 mm contact separation in each pole shall be provided. Use non-fuse breaker (NF) or earth leakage breaker (NV).

10-3. DESIGN FOR CONTROL WIRING

Please note that the types and numbers of control wires needed by the CITY MULTI-S series will depend on the remote controllers and whether they are linked with the system.

10-3-1. Selection number of control wires

		M-NET remote controller
	Use	Remote controller used in system control operations. - Group operation involving different refrigerant systems. - Linked operation with upper control system.
	Remote controller \rightarrow indoor unit	2 wires (non-polar)
	Wires connecting \rightarrow indoor units	
	Wires connecting \rightarrow indoor units with outdoor unit	
	Wires connecting \rightarrow outdoor units	

10-3-2. Control signal wires

- Transmission wires

- Types of transmission cables : Shielding wire CVVS or CPEVS.
- Cable diameter : More than $1.25 \mathrm{~mm}^{2}$
- Maximum wiring length : Within 200 m

10-3-3. M-NET Remote controller wiring

Kind of remote control cable	Shielding wire MVVS
Cable diameter	0.5 to $1.25 \mathrm{~mm}^{2}$
Remarks	When 10 m is exceeded, use cable with the same specifications as 10-3-2. Transmission line wiring

10-3-4. MA Remote control cables

Kind of remote control cable	2-core cable (unshielded)
Cable diameter	0.3 to $1.25 \mathrm{~mm}^{2}$

10-4. SYSTEM SWITCH SETTING

In order to identify the destinations of signals to the outdoor units, indoor units, and remote controller of the MULTI-S series, each microprocessor must be assigned an identification number (address). The addresses of outdoor units, indoor units, and remote controller must be set using their settings switches. Please consult the installation manual that comes with each unit for detailed information on setting procedures.

10-5. EXAMPLE EXTERNAL WIRING DIAGRAM FOR A BASIC SYSTEM

10-5-1. Example using a M-NET remote controller

10-6. METHOD FOR OBTAINING ELECTRICAL CHARACTERISTICS WHEN A CAPACITY AGREEMENT IS TO BE SIGNED WITH AN ELECTRIC POWER COMPANY

The electrical characteristics of connected indoor unit system for air conditioning systems, including the MULTI-S series, will depend on the arrangement of the indoor and outdoor units.
First read the data on the selected indoor and outdoor units and then use the following formulas to calculate the electrical characteristics before applying for a capacity agreement with the local electric power company.

10-6-1. Obtaining the electrical characteristics of a CITY MULTI-S series system
(1)Procedure for obtaining total power consumption

	Page numbers in this technical manual	Power consumption
Total power consumption of each indoor unit	See the technical manual of each indoor unit	(1)
*1 power consumption of outdoor unit	Standard capacity table- Refer to 5-2.	(2)
Total power consumption of system	See the technical manual of each indoor unit	(1)+(2) <kW>

*1 Please note that the power consumption of the outdoor unit will vary depends on the total capacity of the selected indoor units.
(2)Method of obtaining total current

	Page numbers in this technical manual	Subtotal
Total current through each indoor unit	See the technical manual of each indoor unit	(1)
$* 2$ current through outdoor unit	Standard capacity table- Refer to 5-2.	(2)
Total current through system	See the technical manual of each indoor unit	(1)+(2) <A>

*2 Please note that the current through the outdoor unit will vary depending on the total capacity of the selected indoor units.
(3) Method of obtaining system power factor

Use the following formula and the total power and current obtained in parts (1) and (2) on the previous page to calculate the system power factor.

$$
\text { System power factor }=\frac{(\text { Total system power consumption) }}{(\text { Total system current } \times \text { voltage })} \quad \times 100 \%
$$

10-6-2. Applying to an electric power company for power and total current

Calculations should be performed separately for heating and cooling employing the same methods; use the largest resulting value in your application to the electric power company.

11-1. REFRIGERANT PIPING SYSTEM

11-2. PRECAUTIONS AGAINST REFRIGERANT LEAKAGE

11-2-1. Introduction

R410A refrigerant of this air conditioner is non-toxic and non-flammable but leaking of large amount from an indoor unit into the room where the unit is installed may be deleterious.
To prevent possible injury, the rooms should be large enough to keep the R410A concentration specified by KHK : (a high pressure gas safety association) installation guide-

* Maximum concentration

Maximum refrigerant concentration of R410A of a room is $0.30 \mathrm{~kg} / \mathrm{m}^{3}$ accordance with the installation guidelines. To facilitate calculation, the maximum concentration is expressed in units of $\mathrm{kg} / \mathrm{m}^{3}$ (kg of R410A per m^{3})

Maximum concentration of R410A: $0.3 \mathrm{~kg} / \mathrm{m}^{3}$
(KHK installation guidelines S0010)

All refrigerant of this system will leak out to this room if there is leakage at this indoor unit.

11-2-2. Confirming procedure of R410A concentration Follow (1) to (3) to confirm the R410A concentration and take appropriate treatment, if necessary.
(1) Calculate total refrigerant amount by each refrigerant system.
Total refrigerant amount is precharged refrigerant amount at ex-factory plus additional charged amount at field installation.

Note:

When single refrigeration system is consists of several independent refrigeration circuit, figure out the total refrigerant amount by each independent refrigerant circuit.
(2) Calculate room volumes (m^{3}) and find the room with the smallest volume
The part with \square represents the room with the smallest volume.
(a) Situation in which there are no partitions

Outdoor unit

(b) There are partitions, but there are openings that allow the effective mixing of air.
 (situation in which there are no door openings or in which there are openings above and blow doors that occupy at least 0.15% of the floor area)
(c) If the smallest room has mechanical ventilation apparatus that is linked to a household gas detection and alarm device, the calculations should be performed for the second smallest room.

(3) Use the results of calculations (1)and (2) to calculate the refrigerant concentration:
Total refrigerant in the refrigerating unit (kg)
The smallest room in which an indoor
unit has been installed $\left(\mathrm{m}^{3}\right)$

Maximum concentration of R410A: $0.3 \mathrm{~kg} / \mathrm{m}^{3}$
If the calculation results do not exceed the maximum concentration, perform the same calculations for the larger second and third room, etc., until it has been determined that nowhere will the maximum concentration be exceeded.

OUTDOOR UNIT : PUMY-P100YHM PUMY-P125YHM PUMY-P140YHM PUMY-P100YHM 1 PUMY-P125YHM ${ }_{1}$ PUMY-P140YHM 1

From the previous page.

OPERATING PROCEDURE	PHOTOS \& ILLUSTRATION
(6) Remove electrical parts box fixing screw (4×10) and detach the electrical parts box by pulling it upward. The electrical parts box is fixed with 2 hooks on the left and 1 hook on the right.	Photo 4
4. Removing the thermistor <Low pressure saturated temp.> (TH6) (1) Remove the service panel. (See figure 1.) (2) Remove the top panel. (See figure 1.) (3) Disconnect the connectors, TH6 and TH7 (red), on the Multi controller board in the electrical parts box. (4) Loosen the wire clamps on top of the electrical parts box. (5) Pull out the thermistor <Low pressure saturated temp.> (TH6) from the sensor holder. Note: In case of replacing thermistor <Low pressure saturated temp.> (TH6), replace it together with thermistor <Outdoor> (TH7) since they are combined together. Refer to No. 5 below to remove thermistor <Outdoor>.	Photo 5
5. Removing the thermistor <Outdoor> (TH7) (1) Remove the service panel. (See figure 1.) (2) Remove the top panel. (See figure 1.) (3) Disconnect the connector TH7 (red) on the Multi controller board in the electrical parts box. (4) Loosen the wire clamps on top of the electrical parts box. (See photo 4.) (5) Pull out the thermistor <Outdoor> (TH7) from the sensor holder. Note: In case of replacing thermistor <Outdoor> (TH7), replace it together with thermistor <Low pressure saturated temp> (TH6), since they are combined together. Refer to No. 4 above to remove thermistor <Low pressure saturated temp>.	Photo 6

OPERATING PROCEDURE	PHOTOS
6. Removing the thermistor <Outdoor pipe> (TH3) and thermistor <Discharge> (TH4) (1) Remove the service panel. (See figure 1.) (2) Disconnect the connectors, TH3 (white) and TH4 (white), on the Multi controller board in the electrical parts box. (3) Loosen the clamp for the lead wire in the rear of the electrical parts box. (4) Pull out the thermistor <Outdoor pipe> (TH3) and thermistor <Discharge> (TH4) from the sensor holder.	Photo 7
7. Removing the solenoid valve coil <Four-way valve> (21S4) (1) Remove the service panel. (See figure 1.) (2) Remove the top panel. (See figure 1.) [Removing the solenoid valve coil <Four-way valve>] (3) Remove four-way valve solenoid coil fixing screw (M5 $\times 6$ for $100-140 \mathrm{YHM}, \mathrm{M} 4 \times 6$ for $100-140 \mathrm{YHM}_{1}$). (4) Remove the solenoid valve coil <Four-way valve> by sliding the coil toward you. (5) Disconnect the connector 21 S4 (green) on the Multi controller board in the electrical parts box.	Photo 8 Solenoid valve coil <Four-way valve> (21S4)
8. Removing the four-way valve (1) Remove the service panel. (See figure 1.) (2) Remove the top panel. (See figure 1.) (3) Remove 3 valve bed fixing screws (4×10) and 4 ball valve and stop valve fixing screws (5×16) and then remove the valve bed. (4) Remove 4 right side panel fixing screw (5×10) in the rear of the unit and then remove the right side panel. (5) Remove the solenoid valve coil <Four-way valve>. (See photo 8.) (6) Collect the refrigerant. (7) Remove the welded part of four-way valve. Note 1: Collect refrigerant without spreading it in the air. Note 2: The welded part can be removed easily by removing the right side panel. Note 3: When installing the four-way valve, cover it with a wet cloth to prevent it from heating ($120^{\circ} \mathrm{C}$ or more), then braze the pipes so that the inside of pipes are not oxidized.	

OPERATING PROCEDURE

9. Removing solenoid valve coil <Bypass valve> (SV1) and bypass valve
(1) Remove the service panel. (See figure 1.)
(2) Remove the top panel. (See figure 1.)
(3) Remove 3 right side panel fixing screws (5×10) in the rear of the unit and remove the right side panel.
(4) Remove the bypass valve solenoid coil fixing screw (M4 $\times 6$).
(5) Remove the solenoid valve coil <Bypass valve> by sliding the coil upward.
(6) Disconnect the connector SV1 (white) on the Multi controller circuit board in the electrical parts box.
(7) Collect the refrigerant.
(8) Remove the welded part of bypass valve.

Note 1: Collect refrigerant without spreading it in the air. Note 2: The welded part can be removed easily by removing the right side panel.
10. Removing the high pressure switch (63 H) and low pressure switch (63L)
(1) Remove the service panel. (See figure 1.)
(2) Remove the top panel. (See figure 1.)
(3) Remove the electrical parts box. (See photo 4.)
(4) Remove 3 right side panel fixing screws (5×10) in the rear of the unit and remove the right side panel.
(5) Pull out the lead wire of high pressure switch and low pressure switch.
(6) Collect the refrigerant.
(7) Remove the welded part of high pressure switch and low pressure switch.

Note 1: Collect refrigerant without spreading it in the air.
Note 2: The welded part can be removed easily by removing the right side panel.
Note 3: When installing the high pressure switch and low pressure switch, cover them with a wet cloth to prevent them from heating ($100^{\circ} \mathrm{C}$ or more), then braze the pipes so that the inside of pipes are not oxidized.
11. Removing the high pressure sensor (63HS)
(1) Remove the service panel. (See figure 1.)
(2) Remove the top panel. (See figure 1.)
(3) Remove the electrical parts box. (See photo 4.)
(4) Remove 3 right side panel fixing screws (5×10) in the rear of the unit and remove the right side panel.
(5) Pull out the lead wire of high pressure sensor.
(6) Collect the refrigerant.
(7) Remove the welded part of high pressure sensor.

Note 1: Collect refrigerant without spreading it in the air.
Note 2 : The welded part can be removed easily by removing the right side panel.
Note 3: When installing the high pressure sensor, cover it with a wet cloth to prevent it from heating $\left(100^{\circ} \mathrm{C}\right.$ or more), then braze the pipes so that the inside of pipes are not oxidized.

PHOTOS
Photo 9

Photo 10

High pressure
sensor (63HS)

OPERATING PROCEDURE

12. Removing the reactors (ACL1, ACL2, ACL3)
(1) Remove the service panel. (See figure 1.)
(2) Remove the top panel. (See figure 1.)
(3) Remove the 6 screws, screw (8) and (9) (5×10), that fix the front panel and remove the front panel. (See photo 3.)
(4) Remove the 2 screws, screw (1) and (11) (both 4×10), that fix the separator, screw (10) from the valve bed and screw (11) from the bottom of the separator, and tilt the separator to the side of the fan motor slightly. (See photo 11.)
(5) Disconnect the lead wires from the reactor and remove the 4 screws, screw ${ }^{\circledR}$, that fix the reactor to remove the reactor. (See photo 12 and 13.)

Note 1: The reactor is very heavy (4 kg)! Be careful when handling it.
Note 2: The reactor box is also removable.

Photo 12

Photo 13

OPERATING PROCEDURE

13. Removing the compressor (MC)

(1) Remove the service panel. (See figure 1.)
(2) Remove the top panel. (See figure 1.)
(3) Remove 2 front cover panel fixing screws (5×10) and remove the front cover panel. (See photo 3.)
(4) Remove 2 back cover panel fixing screws (5×10) and remove the back cover panel.
(5) Remove the electrical parts box. (See photo 3.)
(6) Remove 3 valve bed fixing screws (4×10) and 4 ball valve and stop valve fixing screws (5×16) and then remove the valve bed.
(7) Remove 3 right side panel fixing screw (5×10) in the rear of the unit and then remove the right side panel.
(8) Remove 3 separator fixing screws (4×10) and remove the separator.
(9) Collect the refrigerant.
(10) Remove the 3 points of the motor for compressor fixing nut using spanner or adjustable wrench.
(11) Remove the welded pipe of motor for compressor inlet and outlet and then remove the compressor.

Note: Collect refrigerant without spreading it in the air.

14. Removing the accumulator

(1) Remove the service panel. (See figure 1.)
(2) Remove the top panel. (See figure 1.)
(3) Remove 2 front cover panel fixing screws (5×10) and remove the front cover panel. (See photo 3.)
(4) Remove 2 back cover panel fixing screws (5×10) and remove the back cover panel.
(5) Remove the electrical parts box. (See photo 3.)
(6) Remove 3 valve bed fixing screws (4×10) and 4 ball valve and stop valve fixing screws (5×16) and then remove the valve bed.
(7) Remove 3 right side panel fixing screw (5×10) in the rear of the unit and then remove the right side panel.
(8) Collect the refrigerant.
(9) Remove 4 welded pipes of power receiver inlet and outlet.
(10) Remove 2 receiver leg fixing screws (4×10). (See photo 16.)
Note: Collect refrigerant without spreading it in the air.

PHOTOS

Photo 14

Photo 15

Photo 16

13-1. FUNCTIONAL PARTS
PUMY-P100YHM PUMY-P100YHM 11
PUMY-P125YHM PUMY-P125YHM
PUMY-P140YHM PUMY-P140YHM

Part numbers that are circled are not shown in the figure.

No.	Part No.	Part Name	Specification			Remarks (Drawing No.)	Wiring Diagram Symbol	Recommended Q'ty	Price	
				PUMY-P100,125,140						
				YHM	YHM ${ }_{1}$				Unit	amount
1	R01 E41 221	FAN MOTOR		2			MF1,2			
	R01 E44 221	FAN MOTOR			2		MF1,2			
2	R01 E01 115	PROPELLER FAN		2	2					
3	R01 E02 097	NUT		2	2					
4	T7W E07 259	REACTOR		3	3		ACL1,2,3			
5	R01 E06 413	CHARGE PLUG		2	2					
6	T97 410747	COMPRESSOR	ANB33FDEMT Including RUBBER MOUNT	1	1		MC			
7	R01 E09 410	STOP VALVE	3/8	1	1					
8	R01 E09 411	BALL VALVE	5/8	1	1					
9	R01 E03 450	STRAINER		1	1					
10	R01 E35 440	ACCUMULATOR		1	1					
11	R01 E09 490	OIL SEPARATOR		1	1					
12	R01 E22 425	CAPILLARY TUBE		1	1	$\phi 2.5 \times \phi 0.8 \times 1000$				
13	T7W E04 208	H.P SENSOR		1	1		63HS			
14	R01 E09 428	BYPASS VALVE		1	1					
15	T7W E08 242	SOLENOIDVALVECOLL CBYPASSVALVE>		1	1		SV1			
16	R01 25T 209	LOW PRESSURE SWITCH		1	1		63L			
17	T7W A01 242	SOLENOID COIL <FOUR-WAYVALVE>		1			2154			
	T7W E28 242				1		2154			
18	R01 E24 403	FOUR-WAY VALVE		1						
	R01 E26 403				1					
19	T7W E43 202	THERMISTOR		1	1		TH6,7			
20	R01 E04 208	HIGH PRESSURE SWITCH		1	1		63H			
21	T7W E26 408	HEAT EXCHANGER		1	1					
22	T7W E08 346	NOISE FILTER CIRCUIT BOARD		1			N.F.			
	T7W E14 346				1		N.F.			
23	T7W E39 310	CONVERTER CIRCUIT BOARD		1	1		CONV.B.			
24	T7W E26 313	POWER CIRCUIT BOARD		1	1		P.B.			
25	-	ELECTRICAL PARTS BOX		1	1	(BK00C410G06)				
26	R01 E08 233	RESISTOR		1	1		RS			
27	T7W E03 254	MAIN SMOOTHING CAPACITOR		2	2		CB1, CB2			
28	T7W E06 259	REACTOR		1	1		ACL4			
29	R01 E01 311	TRANSMISSION POWER BOARD		1	1		M-P.B.			
30	R01 H52 310	MULTI CONTROLLER CIRCUIT BOARD		1			MULTI.B.			
	R01 H76 310				1		MULTI.B.			
31	T7W E17 716	TERMINAL BLOCK	3P (M1, M2, S)	2	2		TB3, TB7			
32	T7W E06 716	TERMINAL BLOCK	5P (L1,L2,L3,N, © $^{\text {c }}$	1	1		TB1			
33	R01 E02 239	FUSE	250V 6.3A	2	2		F1,2			
(34)	R01 E66 202	THERMISTOR (OUTDOOR PIPE)		1	1		TH3			
(35)	T7W E06 254	CAPACITOR		1	1		CK			
36	R01 17T 201	THERMISTOR (DISCHARGE)		1			TH4			
	R01 44L 201				1		TH4			

13-2. STRUCTURAL PARTS

PUMY-P100YHM PUMY-P125YHM PUMY-P140YHM
PUMY-P100YHM 1 PUMY-P125YHM 1 PUMY-P140YHM 1

	Part No.			Part Name	Specification	Q'	$\begin{aligned} & \text { set } \\ & , 125,140 \end{aligned}$	Remarks (Drawing No.)	Wiring Diagram Symbol	Recommended Q'ty	Price		
				YHM		YHM ${ }_{1}$	Unit				Amount		
1	-				F.ST SCREW	(5×10)	38	38	(DG12F536H10)				
2	R01	E02	662	SIDE PANEL (L)		1							
	T7W	E02	662	SIDE PANEL (L)			1						
3	T7W	E02	691	FAN GRILLE		2	2						
4	T7W	E02	667	FRONT PANEL		1	1						
5	-			SEPARATOR		1	1	(BK00C409G05)					
6	R01	E14	686	BASE ASSY		1	1						
7	R01	E25	130	MOTOR SUPPORT		1	1						
8	-			VALVE BED ASSY		1	1	(BK00C142G15)					
9	R01	30L	655	HANDLE		2	2						
10	R01	E00	658	COVER PANEL (FRONT)		1							
	R01	E13	658	COVER PANEL (FRONT)			1						
11	R01	E01	658	COVER PANEL (REAR)		1							
	R01	E11	658	COVER PANEL (REAR)			1						
12	R01	E24	661	SIDE PANEL (R)		1	1						
13	T7W	E04	668	SERVICE PANEL		1	1						
14	-			LABEL (MITSUBISHI)		1	1	(DG79R130H01)					
15	R01	E01	698	REAR GUARD		1	1						
16	R01	E08	641	TOP PANEL		1	1						
17	R01	E00	655	HANDLE		1	1						

14-1. STRUCTURAL PARTS

PUMY-P100YHM 1 PUMY-P125YHM 1 PUMY-P140YHM 1

No.		Part No.			Part Name	Specification	PUMY-P100/125/140YHM $_{1}$	Remarks (Drawing No.)	Wiring Diagram Symbol	Recommended Q'ty	Price		
					Unit						Amount		
1	G		-			F.ST SCREW	(5×10)	38	(DG12F536H10)				
2	G	T7W	E03	662	SIDE PANEL (L)		1						
3	G	T7W	E03	691	FAN GRILLE		2						
4	G	T7W	E06	667	FRONT PANEL		1						
5	G		-		SEPARATOR		1	(BK00C409G06)					
6	G	R01	E31	686	BASE ASSY		1						
7	G	R01	E27	130	MOTOR SUPPORT		1						
8	G		-		VALVE BED ASSY		1	(BK00C142G15)					
9	G	R01	E01	655	HANDLE		2						
10	G	R01	E13	658	COVER PANEL (FRONT)		1						
11	G	R01	E11	658	COVER PANEL (REAR)		1						
12	G	R01	E32	661	SIDE PANEL (R)		1						
13	G	T7W	E09	668	SERVICE PANEL		1						
14	G		-		LABEL (MITSUBISHI)		1	(DG79R130H01)					
15	G	R01	E07	698	REAR GUARD		1						
16	G	R01	E15	641	TOP PANEL		1						
17	G	R01	E02	655	HANDLE		1						

14-2. FUNCTIONAL PARTS
PUMY-P100YHM 1 PUMY-P125YHM 1 PUMY-P140YHM 1

Part numbers that are circled are not shown in the figure.

No	$\stackrel{0}{1}$	Part No.	Part Name	Specification	Q'ty/set	Remarks (Drawing No.)	Wiring Diagram Symbol	Recommended Q'ty	Price	
					PUMYP100/125/140YHM 1				Unit	Amount
1	G	R01 E44 221	FAN MOTOR		2		MF1,2			
2	G	R01 E08 115	PROPELLER FAN		2					
3	G	R01 E09 097	NUT		2					
4	G	T7W E12 259	REACTOR		3		ACL1,2,3			
5	G	R01 E14 413	CHARGE PLUG		2					
6	G	T97 415747	COMPRESSOR	ANB33FDEMT Including RUBBER MOUNT	1		MC			
7	G	R01 E13 410	STOP VALVE	3/8	1					
8	G	R01 E11 411	BALL VALVE	5/8	1					
9	G	R01 E06 450	STRAINER		1					
10	G	R01 E44 440	ACCUMULATOR		1					
11	G	R01 E12 490	OIL SEPARATOR		1					
12	G	R01 E26 425	CAPILLARY TUBE		1	$\phi 2.5 \times \phi 0.8 \times 1000$				
13	G	R01 E07 208	H.P SENSOR		1		63HS			
14	G	R01 E14 428	BYPASS VALVE		1					
15	G	R01 E00 209	LOW PRESSURE SWITCH		1		63L			
16	G	T7W E32 242	SOLENOIDVALVECOLL <BYPASSVALVE)		1		SV1			
17	G	T7W E28 242	SOLENOID COIL <FOUR-WAYVALVE>		1		21S4			
18	G	R01 E26 403	FOUR-WAY VALVE		1					
19	G	R01 E94 202	THERMISTOR		1		TH6,7			
20	G	R01 E06 208	HIGH PRESSURE SWITCH		1		63H			
21	G	T7W E39 408	HEAT EXCHANGER		1					
22	G	T7W E16 346	NOISE FILTER CIRCUIT BOARD		1		N.F.			
23	G	T7W E54 310	CONVERTER CIRCUIT BOARD		1		CONV.B.			
24	G	T7W E32 313	POWER CIRCUIT BOARD		1		P.B.			
25	G	-	ELECTRICAL PARTS BOX		1	(BK00C410G06)				
26	G	R01 E10 233	RESISTOR		1		RS			
27	G	T7W E07 254	MAIN SMOOTHING CAPACITOR		2		CB1, CB2			
28	G	T7W E11 259	REACTOR		1		ACL4			
29	G	R01 E02 311	TRANSMISSION POWER BOARD		1		M-P.B.			
30	G	R01 H76 310	MULII CONTROLLER CIRCUIT BOARD		1		MULTI.B.			
31	G	T7W E31 716	TERMINAL BLOCK	3P (M1, M2, S)	2		TB3,TB7			
32	G	T7W E30 716	TERMINAL BLOCK	5P (L1,L2,L3,N, ©)	1		TB1			
(33)	G	R01 E06 239	FUSE	250V 6.3A	2		F1,2			
(34)	G	R01 H00 202	THERMISTOR (OUTDOOR PIPE)		1		TH3			
(35)	G	T7W E10 254	CAPACITOR		1		CK			
36	G	R01 E11 201	THERMISTOR (DISCHARGE)		1		TH4			

DRAIN SOCKET

Part No.	PAC-SG61DS-E
PIR OUTLET GUIDE	
Part No. * Need two piece. AIR GUIDE Part No. PAC-SH639SG-E * Need two piece.	

DRAIN PAN

Part No.	PAC-SG64DP-E

FILTER DRYER (For liquid line : $\phi 9.52$)

Part No.	
$*$ Only for R410A model (Don't use for R22 model)	PAC-SG82DR-E

BRANCH PIPE (Joint)

Part No.	NUMBER OF BRANCHING POINTS
CMY-Y62-G-E	2
CMY-Y64-G-E	4
CMY-Y68-G-E	8

[^0]: NOTE :
 This service manual describes technical data of outdoor unit.
 As for indoor units, refer to its service manual.

 - RoHS compliant products have <G> mark on spec name plate.

 For servicing of RoHS compliant products, refer to RoHS PARTS LIST.

[^1]: *1. PUMY-P • YHM 1 can connect Fresh Air type indoor unit. (PUMY-P • YHM can NOT connect.)
 It is possible only by $1: 1$ system.
 (One indoor unit of Fresh Air type is connected with one outdoor unit.)
 Operating temperature range(outdoor temperature) for fresh air type indoor units differ from other indoor units.
 Refer to 3-2(3).
 *2. When the indoor unit of Fresh Air type is connected with the outdoor unit, the maximum connectable total indoor unit capacity is $110 \%\left(100 \%\right.$ in case of heating below $-5^{\circ} \mathrm{C}\left(23^{\circ} \mathrm{F}\right)$).

[^2]: *2.Thermo-off (FAN-mode) automatically starts if the outdoor temp. is lower than $21^{\circ} \mathrm{C}$ D.B..
 *3. Thermo-off (FAN-mode) automatically starts if the outdoor temp. is higher than $20^{\circ} \mathrm{CD}$.B..

[^3]: Individual capacity under stated conditions $=$ total capacity under the stated conditions $\times \frac{\text { individual capacity at the rated time }}{}$
 total capacity at the rated time

